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Abstract: This project aims to introduce twistor theory at the level of a masters
student in theoretical physics. We focus on the geometrical aspects of twistor theory,

presenting the incidence relations and how they relate the geometry of complex
Minkowski space, MC, to projective twistor space, PT: a point in MC corresponds to a line
in PT; and two intersecting lines in PT (which define a point in PT) correspond to null
separated points in MC. The main result is a reasonably detailed presentation of the

linear Penrose transform; an isomorphism which relates the solutions of zero-rest-mass
field equations with helicity n and the first Čech cohomology group Ȟ1(PT±;O(−n− 2)) on

projective twistor space. We also present several other neat twistor theory results,
including a demonstration of how to encode the conformal structure of the spacetime in

twistor space.
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0 | Introduction

Twistor theory is a relatively young theory, with its first two papers being published in the late 1960’s, [1, 2].
Penrose’s initial hope for twistor theory was to provide a novel approach to the problems of quantum gravity.
However, as it happened, by the 1980’s the topic sadly hit a road block for its applications to physics. This
did not stop people studying twistor theory itself, and over the following 20 years mathematicians really
took the reins, using the techniques to help better understand geometrical topics. The physics community
once again found inspiration in twistor theory, when none other then Witten published a paper [3] in 2004
demonstrating the links between the calculation of entire tree-level scattering amplitudes of Yang-Mills theory
in 4-dimensional spacetime and twistor theory. Since then twistor theory has found applications in both a
purely mathematical setting as well as in the more physics oriented goal of understanding quantum field
theory (QFT).

The ‘sales pitch’ of the twistor programme is to try replace the familiar ideas of a background spacetime
with a new space, namely twistor space, with the idea that the ‘fundamental’ properties of spacetime can
then be viewed as a repercussion of structures on twistor space. The connection between these two spaces
is given by the incidence relations. We can loosely compare this to the analogy of introducing momentum
space as the Fourier transform of spacetime [4].

As the above has highlighted, twistor theory naturally treads the line between precise, yet rather abstract,
mathematics and the, perhaps more intuitive, realms of theoretical physics. This naturally means that few
graduate students study twistor theory, as they tend to lean too heavily to one side of this delicate line.
This then means that an introductory text in twistor theory must ‘pull in’ both sides, first presenting the
mathematics in order to then demonstrate its connections to the physics. Naturally this would make such
a text anything but ‘nutshell’ in size!1 This project aims to achieve such a balancing act, however it must
be said at this point that the ‘leaning’ is naturally reflective of the author’s own interests, while keeping a
page restriction in mind. We therefore present a lot of the material in a semi-rigorous manner, often delving
into the topics of algebraic and differential geometry, however we must unfortunetly gloss over some of these
details. Perhaps the biggest example of this is a proper discussion of so-called principal G-bundles, which
play a vital role in the construction of spinor fields. A brilliant discussion of this material can be found via
the online course [5], and the interested reader is directed there.

The ultimate aim of this project is to present twistor space and the previously mentioned incidence
relation. We then want to study the novel geometry of this construction and how it links to the geometry of
spacetime itself. We will also discuss how ideas such as conformal field theory (CFT) is captured in twistor
space. The main physics goal is to present the infamous Penrose transform, which relates the solutions to
zero-rest-mass field equations (e.g. Maxwell’s equations) to a mathematical construction on twistor space.

The project is laid out as follows. First we recap/discuss the notions of tensors and the action of the
Lorentz group. At the end of this chapter we will briefly introduce bundles in order to be able to use the
terminology going forward. Then in Chapter 2 we present the double covering map, which allows us to
introduce the connection between vectors and spinors. This will give us our first ‘taste’ of twistor theory,
however it is only in Chapter 3 that we will introduce twistor space itself, along with the zero-rest-mass
equations and the incidence relation. Here we will study the geometrical links between the two spaces, as
well as how CFT is encoded in twistor terms. Chapter 4 is then an almost purely mathematical chapter,
dedicated to introducing sheaf cohomology, which will prove vital for demonstrating the Penrose transform
in Chapter 5. We then finally conclude the project, suggesting further reading for the interested reader.

1Unless the length of the popular ‘blah in a nutshell’ books are taken as a reference!
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1 | Tensors & The Lorentz Group

We start the main content of this project by demonstrating an elementary correspondance which forms the
basis for the construction of twistor theory: the double covering of the Lorentz group by the spin group.1 We
should point out that this correspondance of course has applications outside of twistor theory itself, perhaps
most notably in supersymmetry. This will also be true of a reasonable amount of the other material presented
in this project, and we shall try as best we can to be clear on the applicability of the results as we go.

In order to demonstrate our double covering map, we obviously need to understand the target space, the
Lorentz group, properly and so this chapter is dedicated to such a discussion. The reader should be fairly
familiar with the construction of tensors and the action of the Lorentz group that follows, but we provide it
here for clarity and also to clear up some conventions.

More details on the material presented here can be found via [5–8], as well as a plethora of other
books/courses on differential geometry.

1.1 Recap On Tensors

1.1.1 Vectors

The most basic (or at least most familiar and geometrically intuitive) example of a tensor is a vector.
Geometrically we think of a vectors as little ‘arrows’ that we can add, subtract and scale. Indeed this is
the basic idea behind the definition of a vector space. Vector spaces are their own abstract mathematical
constructions, but they become relevant when discussing spacetimes as the tangent space to a point p ∈M,
where M is our manifold, are vector spaces. We denote the tangent space to p ∈ M simply as TpM, and
will typically denote elements as, e.g., Xp ∈ TpM. We denote the set of all tangent vectors to M as TM,
with no subscript.

Now it is important to note that all of these tangent spaces are completely independent and know nothing
about each other. That is, it is utter nonsense to write something like Xp + Yq, where Xp ∈ TpM and
Yq ∈ TqM. In other words each vector is a completely local quantity, see Figure 1.1. However we know
from our experiences in physics that we would also like a global (or at least in some open region) notion of
vectors. That is, the electric field2 is not defined at a single point but over some region. This motivates us
to introduce vector fields, which are essentially just a collection of different vectors, each at a different point.
We will denote vector fields without the subscripts, i.e. X is a vector field while Yp is merely a vector. It is
hopefully clear that a vector field is a subset of TM. We will later denote the set of vector fields as ΓTM,
but will avoid using this notation until then.

The obvious question to ask is "how do we pick our vectors in order to get a nice vector field?" The most
satisfying answer to this question is given in terms of the bundle formalism, and we shall touch on this briefly
at the end of this chapter. For now we just lean on intuition of "we want them to follow on from each other
nicely".

Before moving on to discuss other types of tensor fields, we first want to recall3 an important claim.

1We will also use the language of homomorphisms to describe such maps. That is we want to find 2-to-1 homomorphism Ψ :
Spin(n)→ SO(n).

2Technically the electric field is an example of something called a 1-form, but this distinction is not important right now.
3It is assumed the reader is familiar with this from the context of general relativity. For this reason the proof (which simply

follows from considering a chart containing p ∈M) is omitted.
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CHAPTER 1. TENSORS & THE LORENTZ GROUP 3

p

q

S2

Figure 1.1: Tangent planes at two points p, q ∈M = S2. The two black arrows indicate
two different tangent vectors in TpM, and so can be added, however the blue arrow is in
TqM and so knows nothing about the black arrows. Figure taken from my notes on [7].

Claim 1.1.1 . Any tangent space to any manifold has the same dimension as the manifold itself, i.e.

dimTpM = dimM ∀p ∈M. (1.1)

1.1.2 Cotangent Vectors

The next important example of a tensor is what is known as a covector. These are also vectors in the vector
space sense, i.e. we can add and scale them, however they are given by the dual of some other vectors. In
the case of tangent vectors they define cotangent vectors as follows.

Definition. [Cotangent Vector] Let Xp ∈ TpM, whereM is a real manifold.4 Then a covector at p ∈M,
ωp, is a linear map

ωp : Xp → R.

We denote the space of cotangent vectors to p ∈ M as T ∗pM. The full set of all cotangent vectors are
then denoted T ∗M.

We can form covector fields by taking a collection covectors at different points. Each covector maps the
corresponding tangent vector to a real number, and so the final result is a collection of real numbers. This
is a scalar field overM, the set of which is denoted C∞(M). That is

ω : X → f ∈ C∞(M).

Claim 1.1.2 . If our manifold is finite dimensional (and so TpM is finite dimensional, by Equation (1.1)) then

T ∗∗p M = TpM. (1.2)

Again it is assumed the reader is familiar with this claim and so the proof is omitted. It is included as it
allows us to see that we can equally view tangent vectors as maps acting on cotangent vectors,

Xp : ωp → R.

1.1.3 Higher Valence Tensors

Now that we have both vectors and covectors we can easily form higher valence tensors via the tensor product.

Definition. [Tensors] Let (V,+, ·) be a vector space, then we define a (r, s)-tensor by

T = V ⊗ ...⊗ V︸ ︷︷ ︸
r-times

⊗V ∗ ⊗ ...⊗ V ∗︸ ︷︷ ︸
s-times

, (1.3)
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which can be viewed as a map

T : V ∗ × ...× V ∗︸ ︷︷ ︸
r-times

×V × ...× V︸ ︷︷ ︸
r-times

→ R.

We can modify the map above by only filling in some of the tensors entries. That is consider a (1, 1)
tensor

T : V ∗ × V → R.

If we only fill the first slot (the V ∗ one), we are left with something that can still eat an element of V and
produce a real number. This is, of course, just a covector. This idea clearly extends to other types of tensors,
which we summarise by saying "only filling certain indices will give us some other, lower rank5 tensor". We
shall return to this idea in a moment when talking about the metric.

We now point out that we have been careful above to try demonstrate the generality of the notion of
a tensor. That is Equation (1.3) holds for any vector space, and need not be the tangent vector space
described above. This will be important later as it will mean that we can construct higher valence spinor
tensors without having to introduce any new technology.

If we consider the case of our tangent and cotangent vectors, we can form tensor fields over our manifold
again with the intuitive notion of taking a tensor at every point.

1.1.4 Abstract Index Notation

The constructions above were all done coordinate free, that is we haven’t used charts in order to construct
our tensor fields. However we know from our experiences with general relativity that in order to do basically
any useful calculation we really need the components of our tensors. However we also know that we should
be weary of using components as these make reference to a specific coordinate chart, and this may lead us
to incorrectly read off chart-dependent results as physical. The most famous example being the coordinate
singularity of an event horizon in Schwarzschild coordinates.

For these reasons, we shall often work with Penrose’s so-called abstract index notation[9]. The basic idea
is that we write down indices on our tensors but do not use any specific coordinate system. This is different
to writing down the components of a tensor, as components are defined w.r.t. a given coordinate system. We
will use lowercase Latin indices for this abstract index notation, and if at any point we make reference to a
specific coordinate system we will switch to the usual Greek indices.

We also adopt the usual conventions of GR where vectors come with an upper index, Xa, and covectors
with a lower index ωa. An (r, s) tensor then has r upper indices and s lower indices,6 T a1...ar b1...bs . We also
adopt Einstein’s summation convention, two repeated indices, one upper and one lower are summed over.

There are three important algebraic operators we can conduct on higher valence tensors. Given an (r, s)
tensor:

(a) Contraction: if both r, s 6= 0 we can contract one upper index with a lower one to produce a (r−1, s−1)
tensor,

Sa2...ar b2...bs := T ca2...ar cb2...bs .

(b) Symmetrisation: if r ≥ 2 we can symmetrise n ≤ r of these indices via (omitting the lower indices)

T (a1...an)an−1...ar :=
1

n!

∑
σ∈G

T aσ(1)...aσ(n)an−1...ar ,

where G is the set of all permutations of n elements. We can similarly symmetrise the lower indices,
provides s ≥ 2.

5The rank of an (r, s) tensor is the sum s+ r.
6We shall also always assume that we take our tensor products so that our upper indices appear first, and then the lower

ones. This is basically done by isomorphisms, e.g. V ∗ ⊗ V ⊗ V ∗ ∼= V ⊗ V ∗ ⊗ V ∗.
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(c) Antisymmetrisation: Similarly to symmetrisation, we can antisymmetrise by including the sign of the
permutation7

T [a1...an]an−1...ar :=
1

n!

∑
σ∈G

(−1)σT aσ(1)...aσ(n)an−1...ar ,

An important example of a higher valence tensor for us will be an antisymmetrised (2, 0) tensor,

T [ab] =
1

2

(
T ab − T ba

)
(1.4)

which we shall henceforth call a bivector. One important property of bivectors for us is the notion of a simple
bivector.

Definition. A bivector T ab is said to be simple iff we can write it as an antisymmetric product of two
vectors, i.e.

T ab = U [aV b].

1.1.5 The Metric

We now want to introduce the metric. We emphasise "now" as we wish to point out that the construction
of tensor fields above made no use of the metric at all. We will emphasise this a few times, as the need for a
metric is one of the key distinguishing properties between a tensor field and a spinor field.

Definition. [Metric] The metric, g, is a (0, 2) tensor field on a manifoldM satisfying

(a) Symmetry: g(X,Y ) = g(Y,X), and

(b) Non-degeneracy: there exists a (2, 0) tensor field which is the inverse of g.

(c) Bilinear

In abstract index notation we denote the metric by gab, the inverse by gab. The two conditions above are
then written

(a) gab = gba, and

(b) gacgcb = δab .

The metric is what allows us to measure lengths and angles on our manifold. In this way it is what gives
‘shape’ to our spaces; it differentiates two manifolds with the same topology, e.g. a potato vs. a round sphere.

As the metric is a (0, 2) tensor field, it eats two vectors. However we said above that if we only fill one
of the slots we again obtain a tensor, in particular a covector. In this way we can "lower the index" on a
vector Xa to give us a covector Xb := gbaX

a. We can use this construction define the covector space via
(Xa)∗ := Xa. We can equally lower the index on higher valence tensors, provided r 6= 0 (otherwise there
are no upper indices to lower!). Similarly the inverse metric gab can be used to "raise" the index on a (r, s)
tensor with s 6= 0.

When considering spacetime, we take our metric to have Lorentzian signature, that is in an orthonormal
frame we have

gab = diag(1,−1,−1,−1),

where we have assumed we are considering a 4-dimensional spacetime, and fixed our convention to be "mostly
minus".

The key point we need here is that the metric allows us to define a Lorentzian inner product on our
tangent spaces. This allows us to categorise vector fields as being either

(a) Timelike: g(X,X) > 0,
7See, e.g., appendix A of [6] if this is unfamiliar.
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(b) Spacelike: g(X,X) < 0, or

(c) Lightlike/Null: g(X,X) = 0.

These give us the familiar notion of a light-cone/null-cone, see Figure 1.2. It is important to note that the
null-cone, being defined by its action on a vector, lives in the tangent space. That is, in general, we have a
different null cone for each TpM.

p

Figure 1.2: Example of a null-cone structure at a point p ∈ M. The red arrows are
timelike vectors, green arrows spacelike ones and the blue ones null. Note that, as it
stands, we have no way of saying which cone is ‘the future’ and which is ‘the past’.
Figure taken (and edited) from my notes on [7].

1.2 Forms

Most of the above material should have been more of a recap than introduction of new material. We now
introduce a structure that is not assumed to be previously understood; the notion of differential forms.

The easiest/quickest definition we can give of a differential form is a totally antisymmetric (0, s) tensor
field. As we have r = 0, we normally categorise forms by the s value, which we relabel p. That is a p-form
is a totally antisymmetric (0,p) tensor field. We denote the set of all p-forms onM by ΛpM.8

Differential forms are vastly interesting and there is a lot we can do with them, but here we shall just
summarise the important tools for us. The first thing we note is that we have already encountered two types
of differential forms, namely:

1. 0-forms: these are simply functions, Λ0M = C∞(M), and

2. 1-forms: these are our covectors, Λ1M = T ∗M.

1.2.1 Top Forms & Volume Forms

The next important thing we note is that, if our manifold has dimension d, we can’t have a non-vanishing
(p > d)-form, as we would necessarily need to have at least two of the indices the same, and then antisymmetry
would set it to zero. In other words, we have to cap 0 ≤ p ≤ d. We therefore see that d-forms are rather
special, and we give them the name top forms. A subcategory of top forms are volume forms, defined as
follows.

Definition. [Volume Form] Let M be a d dimensional manifold. Then a top form Ω is called a volume
form if it is nowhere vanishing, Ω|p 6= 0 for all p ∈M.

Volume forms allow us to define a preferred set of frames — for now we take a frame to just to be a basis
in each tangent vector space — on a given manifold, which is highlighted in the next definition.

8The p here does not mean a point p ∈ M, but rather the rank p. That is ΛpM =
∧p (T ∗M

)
, where

∧p denotes our total
antisymmetrisation over the p copies of T ∗M.
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Definition. [Right-Handed Frame] A basis (X1, ..., Xd) of tangent vectors is called right-handed if

Ω(X1, ..., Xd) > 0. (1.5)

We can similarly define a left-handed frame, but with Ω < 0. This notion of a right- vs. left-handed
frames are exactly those we are familiar with from vector calculus.

Besides giving us right- and left-handed frames, volume forms also allow us to introduce an orientation
of a manifold, which we now define.

Definition. [Orientation Of A Manifold] A manifold M is said to be orientable if we can restrict the
chart transition maps in such a way that the determinant Jacobian only takes one sign, i.e.

det

(
∂yν

∂xµ

)
> 0 OR det

(
∂yν

∂xµ

)
< 0

for any two overlapping charts (U, x) and (V, y).

We then have the following proposition.

Proposition 1.2.1. A manifold is orientable iff it admits a volume form.

Now note that, for a given manifold, all top forms are related to each other by the multiplication by a
scalar field. That is if ω, ξ ∈ ΛdM then there must exist a f ∈ C∞(M) such that

ω = fξ.

This is important as it tells us that we can relate our top forms to the d-dimensional Levi-Civita symbol

εa1...ad =


1 if (a1, a2, ..., ad) is an even permutation of (1, 2, ..., d),

−1 if (a1, a2, ..., ad) is an odd permutation of (1, 2, ..., d),

0 otherwise.

As we are working with a Lorentzian metric, when we raise all the indices on the Levi-Civita symbol we get
a sign change, that is

εa1...ad =


−1 if (a1, a2, ..., ad) is an even permutation of (1, 2, ..., d),

1 if (a1, a2, ..., ad) is an odd permutation of (1, 2, ..., d),

0 otherwise.

Now the Levi-Civita symbol is not a genuine tensor but a tensor density. This basically means that it is only
a tensor once we weight it with the square root of the determinant of the metric. We can therefore relate our
volume form to the Levi-Civita symbol by

Ωa1...ad :=
√
gεa1...ad ,

where g := |det gab|. The antisymmetry is obviously inherited from εa1...ad , and is non-vanishing because
the metric is globally non-degenerate (i.e. det gab 6= 0). The completely raised version of this volume form is
then given by

Ωb1...bd =
√
ggb1a1 ...gbdadεa1...ad

=
√
gg−1εb1...bd

=
√
g−1εb1...bd

where we have used
gb1a1 ...gbdadεa1...ad = det gab =: g−1
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and the determinant rules

detA detB = det(AB) and detA−1 =
1

detA
.

Finally, using the identity
εa1...adε

a1...ad = −d!,

we obtain
Ωa1...adΩa1...ad = εa1...adε

a1...ad = −d!

In this way we can identity the choice of orientation with the specification of the d-dimensional Levi-Civita
symbol.

Next note that using that √g > 0, we see that Equation (1.5) is equivalent to

εa1...adX
1...Xd > 0,

and so we can also link our notion of right- and left-handed to the Levi-Civita symbol. If we take an
orthonormal right-handed frame we get

εa1...adX
1...Xd =

√
g−1.

For our 4-dimensional Minkowski (so √g = 1) spacetime we denote our orthonormal right/let-handed frame
as

εabcdT
aXbY cZd = ±1. (1.6)

Time Orientation

As the names have suggested, orientation and handedness essentially allow us to completely orientate our
frames in spacetime, and so we can differentiate ‘future’ from ‘past’. This is done by choosing one of the light
cones in Figure 1.2 to be a "future null-cone" and the other is then the "past null-cone". Mathematically
this is done by introducing a so-called time-orientation on an oriented Lorentzian manifold. This is a smooth
vector field T that

(a) is no-where vanishing, and

(b) time-like, g(T, T ) > 0.

Smooth essentially means that our vector field doesn’t suddenly "jump" as we move from one point p ∈ M
to the next q ∈M. We demonstrate this pictorially in Figure 1.3.

1.2.2 Hodge Dual

We now need to introduce an interesting and useful operation on forms. It goes by the name of Hodge dual,
denoted ?.

Definition. [Hodge Dual] Let M be a d-dimensional manifold and ω ∈ ΛpM be a p-form, for any
0 ≤ p ≤ d. Then the Hodge dual is defined as a linear mapping

? : ΛpM→ Λd−pM,

which in components reads

(?ω)a1...ad−p :=
1

p!

√
gεa1...an−pb1...bpω

b1...bp

=
1

p!

√
gεa1...an−p

b1...bpωb1...bp ,

(1.7)

where the second line simply follows from the fact that we can freely exchange the our raised and lowered
indices.
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Tp

Tq

Tp

q

Figure 1.3: Pictorial representation of the relativistic spacetime. The metric g produces
a double cone structure in the tangent plane to each point of the manifold. In order to
differentiate the two cones, a smooth vector field T is introduced in such a way that, at
each point p ∈M , the vector Tp ∈ T points within one of the two cones associated to that
point. This cone is then identified as the ‘future’ relative to that point. The smoothness
of T (indicated by the shaded region) ensures a nice transition from the ‘future’ of one
cone to another. Solid lined cones indicate the chosen ‘future’ cones and dashed the ‘past’
cones. Figure taken from my notes on [7].

From here we can readily check that

?2 ω := ?(?ω) = (−1)p(d−p)+1ω. (1.8)

Why is this useful for us? Well we note that we are dealing with a 4-dimensional manifold and so 2-forms
— which are the lowered versions of our bivectors introduced above, Equation (1.4) — are mapped to 2-forms
under the Hodge dual. On top of this they obey

?2F = −F, F ∈ Λ2M,

and so we conclude that 2-forms are eigenvectors of the Hodge dual with eigenvalues ±i. The eigenvectors
with eigenvalue +i are called self-dual and those with −i, anti-self-dual. In other words:

The Hodge star operator gives us an involution on 2-forms, which induces a decomposition

Λ2M = Λ2
+M⊕ Λ2

−M, (1.9)

where Λ2
+M is the space of self-dual 2-forms and Λ2

−M the space of anti-self-dual 2-forms. These
two spaces only depend on the conformal classa of g [11].

aIt is assumed the reader is familiar with the notion conformal symmetries. More information can be found in, e.g.,
Simmons-Duffin’s TASI notes, [10].
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1.2.3 Exterior Derivative

Next we want to introduce what is known as the exterior derivative, denoted d. In its most basic sense, it is
a map that increases the rank of a form by one:

d : ΛpM→ Λp+1M. (1.10)

To give a more complete definition of d, we need to introduce the wedge product. This is simply an
antisymmetric tensor product on forms,

α ∧ β := α⊗ β − β ⊗ α,

which, if α ∈ ΛpM and β ∈ ΛqM, is clearly a map to Λp+qM. It follows immediately from our discussion
of top forms that we require p+ q ≤ dimM, if we want a non-vanishing result. We then have the following
definition

Definition. [Exterior Derivative] The exterior derivative is the mapping Equation (1.10) satisfying:

(i) Linearity: Let α, β ∈ ΛpM be any p-forms, then d(α+ β) = dα+ dβ.

(ii) Graded Leibniz: Let α ∈ ΛpM and β ∈ ΛqM, then d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ dβ.

(iii) Let f ∈ Λ0M∼= C∞(M) and X ∈ ΓTM be a smooth function and vector field, respectively, then9

df(X) := X(f).

(iv) Nilpotency ("It squares to zero"): For any α ∈ ΛpM, with 0 ≤ p ≤ dimM

d2α := d ◦ dα = 0. (1.11)

Claim 1.2.2 . The exterior derivative map is unique.

Proof. Omitted. See, e.g., the proof of Theorem 2.5 in [12].

The first three conditions are obviously important and useful, however the most important for us will be
condition (iv), and will be the grounding for the next subsection.

1.2.4 deRham Cohomology

We will develop a more rigorous definition of cohomology in Chapter 4, but it is instructive for us at this
point to give a quick introduction via deRham cohomology.

We start by introducing closed p-forms, which we denote Zp(M) ⊆ ΛpM. These are basically the forms
that lie in the kernel of d, i.e. α ∈ Zp(M) iff α ∈ ΛpM and dα = 0. Now it follows immediately from (iv)
that if there exists a β ∈ Λp−1M such that α = dβ, then α is closed. We call such p-forms exact and denote
them Bp(M). It is hopefully clear that these sets obey

Bp(M) ⊆ Zp(M) ⊆ ΛpM.

The aim of deRham cohomology is to ask the question "how close is the first equality?" That is, it is a
measure of the extent to which a closed form fails to be exact. Mathematically, the p-th deRham cohomology
is given by the quotient space

Hp
dR(M) := Zp(M)/Bp(M), (1.12)

i.e. two p-forms that differ only by an exact form as equivalent:10

α ∼ β ⇐⇒ α = β + dγ,

10See, e.g., Appendix A.1 of [6] for a discussion of equivalence relations.
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where α, β ∈ ΛpM and γ ∈ Λp−1M.
So why is the deRham cohomology interesting? The answer is that it tells us interesting things about

the topology of the manifoldM, in particular it tells us about the number of connected components and the
number of ‘holes’ inM. There are several ways to show these points,11 but here we offer a nice geometrical
explanation, based on the one given in [13].

We can think of the exterior derivative as giving the boundary of the thing it acts on. So if f ∈ C∞(M)
is some smooth function onM, then df are the contour lines of f . We can easily convince ourselves that if
dimM = n, these contours are (n − 1)-dimensional submanifolds ofM. Extending this argument, a closed
p-form is a boundariless (n− p)-dimensional submanifold inM. Another helpful example are volume forms:
these are naturally closed (as we cannot have a (dimM + 1)-form), and are geometrically a 0-dimensional
submanifold, i.e. an allocation of a number, the measure, to each point inM.

From here it is intuitively clear that the 0-th deRham cohomology tells us the number of connected
components in M. That is, the number of connected components of an n-dimensional manifold is exactly
the number of boundariless n-dimensional submanifolds.

We can intuitively ask about higher dimensional cohomology classes by then rewording condition (iv) as
"the boundary of a boundary vanishes." The question of "how close is the first equality?" then becomes "are
there any boundariless (n − p)-dimensional submanifolds ofM that are not the boundary of a (n − p + 1)-
dimensional submanifold?" This may sound like confusing wording at first, however we then note an important
idea: if something is the boundary of another space, it naturally can be contracted away, namely by shrinking
it through the latter space.12 So our deRham cohomology question finally becomes "how many, topologically
different, non-contractible (n− p)-dimensional submanifolds are there onM?" This is basically the question
of "how many ‘holes’ doesM contain?"

We can therefore ‘prove’13 results like

Hp
dR(Rn) =

{
R if p = 0, and
0 otherwise

Hp
dR(Sn) =

{
R if p = 0, n, and
0 otherwise

Hp
dR(Tn) =


R if p = 0, n

Rn if p = 1, n− 1,

0 otherwise

where Tn is the n-torus.

1.3 Lorentz Transformations

We shall now recap Lorentz transformations, highlighting some important points.
The Lorentz group for our 4-dimensional Lorentzian manifold is L = O(1, 3), and is defined as the group

of endomorphisms14 on our tangent planes that preserve the metric, i.e. Λab ∈ L iff

ΛabΛ
c
dηac = ηbd. (1.13)

Considering the Lie algebra, o(1, 3), we can readily show that dimL = 6, given by the antisymmetric 4 × 4
matrices ωab = −ωba.

Vectors transform in the fundamental representation of the Lorentz group. This just means that Lorentz
transformations act on vectors simply as

Λab : V b 7→ ΛabV
b.

11The most mathematically satisfying probably being through the use of homotopy, see, e.g. [6].
12We have to keep track of the orientation of the submanifold. This allows us to ‘cancel’ the two circles that form the boundary

of a annulus, for example.
13Of course much more rigorous proofs exist, most commonly using exact sequences and the Mayer-Vietoris sequence. We

will comment on this a bit more in Chapter 4.
14That is maps from the space to itself.
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Putting this together with Equation (1.13), we see that Lorentz transformations are exactly those spacetime
length preserving transformations on vectors. That is if

Ṽ a = ΛabV
b then g(Ṽ , Ṽ ) = g(V, V ).

As we only have O(1, 3), not SO(1, 3), we have both det Λ = ±1. From the fact that

ΛaeΛ
b
fΛcgΛ

d
hεabcd = det Λεefgh,

we see that we can decompose our Lorentz group into orientation preserving and orientation reversing trans-
formations. That is we have L = L+ ∪ L− where Λ ∈ L+ implies det Λ = 1, and similarly for L−. We can
further decompose these Lorentz transformations by how to effect the right- vs. left-handedness: the Λ0

0

component tells us how the time-axis is effected; if Λ0
0 > 0 it is left unchanged, while if Λ0

0 < 0 it flips.
From Equation (1.6) we see this corresponds to what happens to the right/left-handedness. So in total we
have a decomposition of the Lorentz group as

L = L↑+ ∪ L
↓
+ ∪ L

↑
− ∪ L

↓
−, (1.14)

where ↑ means Λ0
0 > 0 and ↓ means Λ0

0 < 0. Only one of these decompositions forms a proper subgroup
(as it contains the identity) and that is, of course, L↑+. We refer to this as the proper orthochronus Lorentz
group. This subgroup will be very important to use in the next chapter.

1.4 Bundles

We conclude this chapter with a brief introduction to bundles, as they are the natural setting needed to discuss
spinor fields and a lot of the language translates into twistor theory. We first provide a list of definitions and
then tie them all together in Figure 1.4.

Definition. [Bundle] A smooth bundle is a triple (E, π,M), where E and M are smooth manifolds,
known as the total space and base space, respectively, and π : E →M is a smooth, surjective map, known
as the projection map. It is common to use the notation E π→M to denote a bundle.

Definition. [Fibre over p ∈M] Let E π→M be a bundle. We define the fibre over p ∈M as the preimage
under the projection, i.e.

Fibre over p := preimπ(p).

If the fibres to every point p ∈ M are all homeomorphic to the same topological space, say F , then we
call the bundle a fibre bundle with typical fibre F .

Definition. [Trivial Bundle] A fibre bundle with typical fibre F , is called trivial if it is isomorphic to
M× F .

Definition. [Section] Let E π→M be a fibre bundle.15 Then a smooth map σ :M→ E is called a section
if

(π ◦ σ) = 1M.

Intuitively speaking, a section is a ‘cut’ of the total space; imagine passing a knife through it in one swoop,
thereby picking out a single point in each fibre. However we can’t do this randomly as we require the section
to be smooth, which translates pictorially to the chosen points on neighbouring fibres to be ‘close’, i.e. we
want to have a legitimate ‘cut’ of E rather then ‘poking holes’ in it. This is perhaps a subtle point, but it
is important as it immediately tells us that not every bundle admits a global section, the typical example
being a Möbius strip; once you go completely round the strip you do not end up where you started.16 For
this reason we sometimes talk about local sections. This idea will prove useful later.

16The only exception is if we go around the exact centre of the strip, but we get the point.
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p q

M

E

Figure 1.4: Example of a trivial bundle and fibre. The total space, E, is the surface of
the cylinder and the base space, M, is the circle. The bundle is the triple consisting of
E,M and a smooth, surjective projection map π : E →M. The preimage of the point p
w.r.t. the projection map π is the green line — that is π maps every point on the green
line to p — known as the fibre over p. Similarly the blue line is the fibre over q. The
typical fibre is (homeomorphic to) R. The section w.r.t. p, σp : M → E, maps p to a
point within its fibre (a point on the green line). A map τ : M→ E which maps p to a
point in q’s fibre (the blue line) is not a section, as (π ◦ τ)(p) = q 6= 1M(p). The complete
section is the set of points formed by taking one point from each fibre. The total space is
clearly isomorphic to S1 × R and so it is a trivial bundle. Figure from my notes on [7].

1.4.1 Tangent Bundle & Tensor Fields

An important example of a bundle is the tangent bundle. This is an example of a trivial bundle, where the
typical fibres are the tangent planes, which are isomorphic to RdimM. These fibres are vector spaces, and so
this vector space structure is inherited by the bundle itself. It is from here that we can begin to define the
familiar notions of covariant derivative — see lectures 21-24 of [5] for more details.

The tangent bundle is useful for us as it allows us to get a precise definition of tensor fields. Namely, a
smooth section of the tangent bundle gives us a vector field. This is not too hard to see: such a section is
an allocation of a vector to each tangent space in a smooth fashion. This is exactly our intuitive notion of a
vector field. We can easily define cotangent vector fields by defining the cotangent bundle analogously. From
there we simply take tensor products to get our tensor fields.

Another important bundle for us is the so-called frame bundle. As the name suggests, the fibres here
are the different frames we have. Noting that the set of frames is isomorphic to the Lorentz group (as the
Lorentz group takes us from one frame to another), we can actually view the fibres as being O(1, 3). This
is an example of what is known as a principal G-bundle, which is roughly described as a fibre bundle who’s
typical fibre is isomorphic to the group G. The tangent bundle is then a so-called associated bundle to the
frame bundle. This basically just means that the principal G-bundle’s group, for us O(1, 3), can act on the
fibres of the associated bundle, for us the tensor fields. In this way we get a very precise definition of how
the Lorentz group acts on our tensor fields. This construction is really important in a rigorous definition of
spinor fields, however such a discussion would take us too long to include, and so the interested reader is
directed towards lectures 19-20 of [5].

This might sound rather abstract — how do we imagine a group acting on the fibres? — but really it
is much more familiar then we might think. Consider the case of the frame bundle and tangent bundle,
as just described. Specifically, let’s consider taking some fixed frame at p ∈ M and rotating it by some
R ∈ O(1, 3) to get a new frame. In the principal G-bundle language, this is described by what is known as
a right O(1, 3)-action, and basically corresponds to moving within the fibre at p. This is just the statement
that we are considering two different frames to p, related by the rotation R. Every frame at p can be viewed
this way, i.e. given by the action of some L ∈ O(1, 3) on our given frame, and so we see the fibre at p is
isomorphic to O(1, 3) itself. Now, we know from our experiences with GR that when we change frame, we
should also change the components of our tensors, so that the abstract tensor itself remains unchanged. This
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is exactly how R acts on the associated bundle, the tangent bundle; it rotates the tensor in exactly such a
way that the combined effort of rotating the frame and the tensor cancel. In the associated bundle language,
the rotation of the tensor is given by a left O(1, 3)-action. We have tried to depict this in Figure 1.5.

R

p

M

R

p

M

TpM

Figure 1.5: Pictorial description of the action of a rotation R ∈ O(1, 3) to the fibres
of: left) the frame (principal) bundle, and right) the tangent (associated) bundle. A fibre
in the frame bundle (depicted by the vertical line) corresponds to all the different frames
at p ∈ M. For clarity, we have depicted the frames at the two points in the fibre; the
green one being the rotated version of the initial blue one. This action in the frame bundle
causes a related rotation in the tangent bundle, who’s fibre at p is the 2-dimensional plane
drawn. Again the blue arrow (representing the tensor) is rotated to the green one.



2 | Lorentzian Spinors At A Point

Now that we have a good understanding of tensors and the Lorentz group, we can introduce spinors (at a
point) on our Lorentzian manifold. The way we do this is not unique to twistor theory and plays vital roles
in other areas, perhaps most notably in supersymmetry.

A lot of the material in this chapter, and the ones that follow, follows the information in [14], as well as
the other references provided.

2.1 Double Cover Map

We start by considering a funny looking repackaging of the real, 4-dimensional vector V a = (V 0, V 1, V 2, V 3)T

via the following map:

Ψ(V a) = V AA
′

=

(
V 00′ V 01′

V 10′ V 11′

)
=

1√
2

(
V 0 + V 3 V 1 − iV 2

V 1 + iV 2 V 0 − V 3

)
(2.1)

where A,A′ ∈ {1, 2} and where the factor of 1√
2
is a normalisation factor. This construction looks strange

at first, but with a little work we can see that it just corresponds to sending

(V 0, V 1, V 2, V 3) 7→ 1√
2

(
σ0V

0, σ1V
1, σ2V

2, σ3V
3
)

with,

where σ0 = 1 and σi are the Pauli matrices. In this way we construct a one-to-one mapping between 2 × 2
Hermitian matrices and elements of our vector space V . Why do we make such a construction? Well we now
notice that the determinant is related to the spacetime length of V a,

det Ψ(V a) =
1

2
ηabV

aV b, (2.2)

and further if we multiply V AA
′
on the left by a U ∈ SL(2,C) and on the right by the Hermitian conjugate

U† ∈ SL(2,C), the determinant is unchanged:

det Ṽ BB
′

:= det
(
UABV

AA′(U†)
B′

B

)
= detV AA

′
. (2.3)

This procedure clearly also preserves the Hermiticity of V AA
′
. As the determinant is unchanged, so to is the

length, by Equation (2.2). So we have a linear transformation on vectors that leaves their length unchanged,
but this is just a Lorentz transformation! As our mapping is linear, and that dimSL(2,C) = 6 = dimL, this
mapping is necessarily surjective, however it is clearly not injective. This is seen simply by the fact that if
we had used −U,−U† ∈ SL(2,C) in Equation (2.3) we would obtain exactly the same result. Another way
to word this is that the kernel of our map, which we now denote ρ : SL(2,C)→ L, is isomorphic to Z2,

ker ρ := {U ∈ SL(2,C) | ρ(U) = 14×4} ∼= Z2. (2.4)

Now we note that, as U ∈ SL(2,C) has detU = +1, the map is onto L+. Finally using that SL(2,C) is
simply connected1 and that L↑+ ∩ L

↓
+ = ∅, along with ρ(12×2) = 14×4 ∈ L↑+, we see that

1Roughly speaking, a space is simply connected if any two points can be connected by a path, and any two such paths can
be continuously deformed into each other.

15
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ρ : SL(2,C)→ L↑+, (2.5)

is a 2-to-1 isomorphism.

Definition. [Spin Group] The (Lorentzian signature) spin group, Spin(1, d−1), is defined to be the double
covering of the orthochronus group L↑+.

From the construction above and the definition just given, what we have just demonstrated is that

Spin(1, 3) ∼= SL(2,C). (2.6)

2.2 Spin-Space

We now return to Equation (2.1). Now note that if we are dealing with a null-vector, g(V, V ) = 0, then by
Equation (2.2) our matrix is degenerate. This drops the rank of our matrix from two to one, and thus we
may write V AA

′
in terms of the outer product between two complex 2-dimension vectors, related by complex

conjugation:

V AA
′

=

(
α0ᾱ0′ α0ᾱ1′

α1ᾱ0′ α1ᾱ1′

)
= αAᾱA

′
, (2.7)

where we have left the ⊗ symbol implicit on the right-hand side. So in total we have reduced the consideration
of the space of 4-dimensional real null vectors to the consideration of a complex 2-dimensional vector space,
S, and its complex conjugate, S̄ = S′. This vector space S is known as spin-space, and the elements αA ∈ S
and βA

′ ∈ S′ are our spinors. The elements in Equation (2.7) are related by Hermitian conjugation

ᾱA
′

=
(
αA
)†
. (2.8)

Just as we had the covector space dual to V , we also have the dual spin-spaces S∗ and S′∗, with elements
αA ∈ S∗ and βA′ ∈ S′∗. Again we can relate elements in these two spaces by Hermitian conjugation

ᾱA′ =
(
αA
)†
.

2.2.1 Higher Valence Spinors

As we tried to stress above when constructing our tensors, the constructions apply to any vector space, not
just the tangent vector spaces. We can therefore immediately import these ideas in order to construct higher
valence spinors, however we now need to keep track of the fact that we have both primed and unprimmed
indices. So, for example, we can have

αAB
′C′

DE′ ∈ S⊗ S′ ⊗ S′ ⊗ S∗ ⊗ S′∗.

Hermitian conjugation then just extends from the explanations above, so that,(
αAB

′C′
DE′

)†
= ᾱA

′BC
D′E ∈ S′ ⊗ S⊗ S⊗ S′∗ ⊗ S∗.

It follows from this that we can only have a Hermitian spinor if we have the same number of primed and
unprimmed spinors in the same raised/lowered way, i.e. we need the same number of copies of S and S′ and
the same number of copies of S∗ and S′∗. For example, αABC

′D′ is Hermitian if

ᾱA
′B′CD = αA

′B′CD e.g.
=⇒ ᾱ0′0′01 =

(
α000′1′

)†
= α000′1′ .
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From here we can show that there is a 1-1 correspondence between real (r, s)-tensors and Hermitian spinors
with r S,S′ indices and s S∗,S′∗ indices [14]. The particular case of a (1, 0)-tensor, i.e. a vector, is simply
Equation (2.7); V is in the Hermitian part of S⊗ S′.

It is in this way that people often say that spinors are more elementary then tensors: given any real tensor
we can represent it in spinor language, however the reverse is not true; we cannot write a non-Hermitian
spinor as a vector. This is true, however we should be a bit careful; as we explained before, the construction
of a tensor field is purely topological, i.e. we don’t need a metric structure. This, however, is not true for
spinors: in order to define a spinor field we must equip our manifold with some form of metric. A proper
understanding of this comes from a principal G-bundle formalism: the idea is that we need to define the spin
frame bundle, which is obtained from the frame bundle mentioned previously along with our double covering
map. However this map is onto L↑+, and so in order to construct the spin frame bundle we need a metric
space. Spinor fields are then sections of the appropriate associated bundle, called spin-bundles. See [5, 8] for
more details.

2.2.2 SO(4,C)

In twistor theory it is often useful to consider complexified spacetime, in which case our Lorentz group
becomes SO(4,C). The reason this is important is it gives us another interesting isomorphism that works
well with Equation (1.9) [11]:

The group SO(4,C) is not simple and decomposes as

SO(4,C) ∼=
(
SL(2,C)× S̃L(2,C)

)
/Z2. (2.9)

The two spin-bundles, S and S′, are representation spaces of SL(2,C) and S̃L(2,C), respectively.
The reason we consider complexified spacetime is that it encompasses every real spacetime signature.

That is, we formulate our constructions in this complexified spacetime and then at the end of the calculation
take a specific real slice to give us our desired signature. We summarise the three slices here [11]

• Lorentzian: We have just seen that in Lorentzian signature we have Spin(1, 3) ∼= SL(2,C). We have
also just highlighted that in Lorentzian signature, the two copies of SL(2,C) in Equation (2.9) are
related by complex conjugation.

• Riemannian: In this signature we have Spin(4, 0) ∼= SU(2)× S̃U(2).

• Split: Here we get Spin(2, 2) ∼= SL(2,R)× S̃L(2,R). It is only in this signature that we have a notion
of real spinors.

2.2.3 Raising & Lowering

Of course we can also inherit the (anti)symmetrisation procedures to our spinor tensors. However we note
that, as our spin space is 2-dimensional, our top forms are 2-forms. In other words, up to complex multiples,
there is a unique (non-zero) 2 index spinor form. As before, our reference choice is the Levi-Civita symbol,
εAB . We also have a 2-form on our complex conjugate space, which is simply given by ε̄A′B′ ≡ εA′B′ , where
the right-hand side is a notational brevity we introduce. We also have the raised index versions εAB and
εA
′B′ . These are defined via the following contractions

εABεCB = δC
B , (2.10)

where care must be taken to note the placement of indices, as these are antisymmetric. We can raise and
lower our spinor indices using these simply as

εAB : S→ S∗

αA 7→ αA := αBεBA
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and

εAB : S∗ → S

αA 7→ αA := εABαB ,

Again care must be taken with the ordering of indices: for unprimed indices we contract ‘top left to bottom
right’. Of course the same ideas apply for the primed indices, but now the contraction order to changed to
‘bottom left to top right’, i.e.

εA′B′ : S′ → S′∗

αA
′
7→ αA′ := εA′B′α

B′ ,

and similarly for εA
′B′ .

εAB and εA′B′ are actually examples of what are known as symplectic forms. This just means they are
closed (as they are top-forms), non-degenerate, 2-forms. We then say that S and S′ are symplectic manifolds.
We will not use this language much, but this comment is just included to make comparison to references,
e.g. [11], easier.

Next we note that, for any U ∈ SL(2,C)

UA
BUC

DεBD = detUεAC = εAC ,

which is the spin space equivalent of Equation (1.13). Putting all this together suggests that there is some
sort of link between the spacetime metric2 ηab and our 2-forms. Recalling that a real (0, 2)-tensor is in 1-to-1
correspondance with a Hermitian spinor with no S/S′ indices and 2 S∗ and S′∗ indices, we propose the ansatz

ηab ∼ εABεA′B′ .

Claim 2.2.1 . If we choose our εAB such that ε01 = 1 — which implies ε0′1′ = 1 by Hermitian conjugation —
then the exact correspondance is

ηab = εABεA′B′ . (2.11)

Proof. We have already argued that the right-hand side of Equation (2.11) corresponds to some real (0, 2)-
tensor. Next we note that it is symmetric as

ηba = εBAεB′A′ = (−1)2εABεA′B′ = ηab.

Next note that all spinors are null w.r.t. εAB/εA′B′ simply by antisymmetry

εABα
AαB = ε[AB]α

(AαB) = 0,

where we have used that αAαB = α(AαB) and the general tensor rule T[AB]S
(AB) = 0. Putting this together

with Equation (2.7), i.e. that any null vector is of the form V a = αAᾱA
′
, we have

ηabV
aV b = εABεA′B′α

AᾱA
′
αBᾱB

′
=
(
εABα

AαB
)(
εA′B′ ᾱ

A′ ᾱB
′)

= 0,

and so we are correct up to a normalisation constant. Finally we fix this by considering a unit time-like
vector3 T a 7→ tAA

′
, i.e.

Ψ(T a) =
1√
2

(
1 0
0 1

)
,

then
ηabT

aT b = εABεA′B′t
AA′tBB

′
= ε01ε0′1′t

00′t11′ + ε10ε1′0′t
11′t00′ = 1,

which is the required normalisation.

Equation (2.11) is another important result, and we rewrite it here in a slightly nicer notation for what
is to follow.

2From now on, unless otherwise specified, we shall work in Minkowski spacetime, so g → η. A justifcation for this shall be
given later.

3Note that we do not have a decomposition into tA t̄A
′
, as Ta is not null.
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If α, β are spinor fields in S and α′, β′ are spinor fields in S′, then we have a relation

η
(
α⊗ α′, β ⊗ β′

)
= ε
(
α, β

)
ε′
(
α′, β′

)
. (2.12)

It is the interplay between Equations (1.9), (2.9) and (2.12) that makes twistor theory particularly effective
in 4-dimensions [11].

2.3 Spinor Decomposition & Principal Null Directions

2.3.1 Dyads

We are now in a position to observe some nice properties of higher rank spinors. First we note that, just as
a point in our tangent space is given by a tetrad (i.e. a basis), a point in our spin space S is given by a dyad,
which we denote (oA, ιA). We normalise this dyad by imposing

εABo
AιB = oBι

B = 1. (2.13)

As our spinors provide a double cover of L↑+, we can use our dyad to define a tetrad. We do this by defining4

`a := oAōA
′
, na := ιAῑA

′
, ma := oAῑA

′
, and m̄a := ιAōA

′
. (2.14)

Using Equation (2.11), we can readily verify that these are all null. We also note that `a and na are real,
as their spinor decomposition is Hermitian. However ma and m̄a are complex, and are related by Hermitian
conjugation. It is also easy to check that the only non-vanishing inner-products are

ηab`
anb = 1 = −ηabmam̄b. (2.15)

On top of this, the tetrad is also right-handed. Such a tetrad is referred to as a null tetrad.
As our dyad forms a basis for S, we should be able to express our 2-form in terms of a normalised dyad

(oA, ιA). Using antisymmetry and the fact that we want ε01 = 1 (so that Equation (2.11) holds), we are lead
to conclude that

εAB = oAιB − ιAoB . (2.16)

The reason we’re doing all this is to prove the following claim.

Claim 2.3.1 . The following contraction holds

εABε
CD = δA

CδB
D − δADδBC . (2.17)

Proof. We show this by considering each case in turn.

• First we note that if A = B and/or C = D then, by antisymmetry, the expression vanishes.

• Now consider A = C and B = D, then Equation (2.16) gives us

εABε
CDδC

AδB
D =

(
oAιB − ιAoB

)(
oAιB − ιAoB

)
δC

AδB
D.

Now use Equation (2.13) and the null conditions

oAo
A = 0 = ιAι

A,

so that we are just left with

εABε
AB = −oAιAιBoB = +oAι

AoBι
B = 1,

where we have used ιBoB = ιAεABo
B = −ιCεBAoB = −ιAoA.

• The case for A = D and B = C follows similarly to the above but we get a minus sign.

4Note that our double cover is seen from the fact that (oA, ιA)→ (−oA,−ιA) gives the same result.
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2.3.2 Flagpoles & Flagplanes

We have constructed our dyads (oA, ιA) and shown how we can relate them to a tetrad for our spacetime.
We can now give a nice geometrical picture for these dyads, in particular in relation to Minkowski spacetime,
Figure 2.1b.

The first thing we note is that, as we have seen, any spinor oA defines a real null vector `a = oAōA
′
. We

call such a vector the flagpole of oA. Next we claim that any non-zero spinor oA defines a real, simple null
bivector (here written as a 2-form) via [15]

Pab = oAoBεA′B′ + ōA′ ōB′εAB .

If we then complete the dyad by introducing a spinor ιA, we can use Equation (2.16) (and the barred version)
to write Pab as

Pab = oAoB
(
ōA′ ῑB′ − ῑA′ ōB′

)
+ ōA′ ōB′

(
oAιB − ιAoB

)
= `amb − `bma + `am̄b − `bm̄a

= 2`[aXb],

where we have used Equation (2.14) and defined

Xa := ma + m̄a.

The last line above also demonstrates explicitly that Pab is simple.
If we now again recall the inner products for our tetrad, Equation (2.15), we see that Xa is orthogonal to

`a and is spacelike. Finally we note that the choice of ιA was not unique, and we could just have easily used
ι̃A = ιA + λoA, as this would still satisfy Equation (2.13) by oAoA = 0. Again recalling Equation (2.14), we
see that such a change in ιa would result in

ma = ιAōA′ 7→ m̃a = (ιA + λoA)ōA′ = ma + λ`a,

and similarly m̄a 7→ m̄a + λ`a. So we see that Xa is altered by a factor of `a.
In this way we see that oA not only defines our flagpole `a, but it also defines a null5 2-plane (given by

shiftingXa along `a) ‘anchored’ around the flagpole `a. We call this plane a flagplane, and the collection of the
flagpole and flagplane the null flag. Hopefully the geometrical picture, Figure 2.1a, helps with understanding
the names.

2.3.3 Principal Null Directions

We now want to draw the following, somewhat unexpected, conclusion: only symmetric spinors matter. It
is not immediately clear why this is true, so let’s flush it out. Suppose we have some generic (r, s)-spinor
that is antisymmetrised on two indices. W.l.o.g. take these to be S∗ indices, Φ...CD... = Φ...[CD]..., where the
"..."s indicate other indices of any kind. Now multiplying by Equation (2.17), we have

εABε
CDΦ...CD... = 2Φ...AB...,

but we equally could have used the εCD on the left-hand side to raise the D index

εCDΦ...CD... = Φ C
...C ...,

in other words we can replace the antisymmetrised indices with a εAB :

Φ...AB... =
1

2
εABΦ C

...C .... (2.18)

Of course a similar argument follows for antisymmetrised S,S′ and S′∗ indices, with the respective ε/ε′s used.
This is a very neat result and so we stress it again: any spinor can be written in terms of symmetric spinors
and the ε/ε′s. This simplifies the problem greatly.

5In the sense that a 2-plane in Minkowski spacetime is null iff it contains at least one null vector, here `a, and all other
vectors are null or spacelike. We move away from the flagpole with Xa, which is spacelike.
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(a) Pictorial depiction of a flagpole and flagplane.
Image from [14]. (b) Pictorial depiction of the relation of a normalised dyad

(oA, ιA), with the resulting null flags, and the standard nor-
malised tetrad (t, x, y, z) of Minkowski spacetime. Image
from [15].

Figure 2.1: Pictorial depictions of null flags.

However, there is, in fact, a further simplification that comes from the fact that our spin spaces are
complex. Consider a general (0, n)-spinor ΦA1...An . Now contract every index with ξAi = (1, x), then the
result ξA1 ...ξAnΦA1...An is a polynomial of degree n in x. Finally, as our space is complex, the solutions are
always valid, and so ΦA1...An factorises. This tells us that we can write ΦA1...An as the symmetrised outer
product over n spinors,

ΦA1...An = α(A1
...βAn). (2.19)

The individual spinors make up the linear factors (i.e. ξ2ξ1...ξ1Φ21...1 = (α1 + ...+ β1)x), and are, of course,
only defined up to a scale. From Equation (2.7), we can construct a real null vector for each of these spinors,
and these null vectors define the principal null directions (p.n.ds) of ΦA1...An .

2.3.4 2-Form Decomposition

As we have mentioned a few times, there is a particular type of real vector we are interested in, a bivector. In
fact we are interested in the lowered index version, the 2-forms. In order to find their spinor decomposition,
let’s consider a general (i.e. not antisymmetrised) (0, 2)-vector, Tab. As it is a real vector, we know that we
can write it in terms of a Hermitian spinor with 2 S∗ and S′∗ indices,6

Tab = TABA′B′ .

Now use the fact that a general 2 index object can be written as the sum of the symmetric and antisymmetric
part to rewrite this as

TABA′B′ = T(AB)A′B′ + T[AB]A′B′

= T(AB)A′B′ +
1

2
εABT

C
C A′B′ ,

where we have made use of Equation (2.18). We can then do a similar thing on the A′B′ indices and obtain
four total terms,

Tab = T(AB)(A′B′) +
1

2

(
εABT

C
C A′B′ + εA′B′T(AB)C′

C′
)

+
1

4
εABεA′B′TCC′

CC′

We can break these terms down in turn:
6Here we have used our ordering isomorphisms to place all unprimed indices first.
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• T(AB)(A′B′) is fully symmetrised across the S∗ and S′∗ indices and so decomposes exactly into its p.n.d.s
and defines a Hermitian spinor corresponding to the trace-free part of Tab.

• The reason we had the trace-free part above is because 1
4εABεA′B′TCC′

CC′ = 1
4ηabTc

c, via Equa-
tion (2.11), and so corresponds to the trace of Tab.

• The two terms grouped in the parentheses are Hermitian conjugate of each other, and so collectively
define a real tensor. Putting this together with the fact that interchanging A↔ B and A′ ↔ B′ gives
an overall minus sign, we see that this corresponds to our 2-form, T[ab].

So in total we conclude that a real 2-form Fab decomposes in spin space as

Fab = ΦABεA′B′ + Φ̄A′B′εAB

= α(AβB)εA′B′ + ᾱ(A′ β̄β′)εAB
(2.20)

where ΦAB = Φ(AB) with p.n.d.s α/β.

We can investigate the effect of the Hodge dual by recalling Equation (1.7), along with[14]

εabcd = i
(
εACεBDεA′D′εB′C′ − εADεBCεA′C′εB′D′

)
so that

εab
cd = i

(
δA

CδB
DδA′

D′δB′
C′ − δADδBCδA′C

′
δB′

D′
)
.

That is,7

(?F )ab =
1

2
εab

cdFcd = −iΦABεA′B′ + iΦ̄A′B′εAB .

This allows us to clearly see the decomposition into self-dual and anti-self-dual, Equation (1.9): the space of
self-dual tensors are those 2-forms with spinor decomposition

W+
ab = Φ̄A′B′εAB ,

while the space of anti-self-dual 2-forms are those with

W−ab = ΦABεA′B′ . (2.21)

From here we can further see the interplay between our three important isomorphisms, Equations (1.9), (2.9)
and (2.12): the first two are related by [11]

Λ2
+M∼= S′∗ � S′∗ and Λ2

−M∼= S∗ � S∗, (2.22)

where � is the symmetric tensor product,

A�B := A⊗B +B ⊗A.

So far we have demonstrated that a lot of physics can be viewed as a consequence of the 2-spinor formalism.
That is, it follows from this approach that we want our spacetime to be 4-dimensional, and on top of this
we require such a spacetime to be globally orientable, both in terms of handedness and time orientability, as
these are needed to define L↑+, which in turn is needed to define a spinor field. We could therefore take the
view that, rather than simply giving them, these concepts are derived from the 2-spinor algebra.

This is a very powerful statement, but we could still do better. Up until now, we have had to provide our
manifoldM by hand, given that it is somewhat restricted by the above requirements. If we could somehow
also view the points inM as a derived consequence of our spinors, we would then be in a very strong position
indeed. This is where twistor theory comes in, with the ultimate goal of "reformulating the whole of basic
physics in twistor terms" [15]. To word it another way, just as we can view spinors as more primitive than
vectors, we can chose to view "twistor algebra as more primitive than spacetime itself."

7We are working with Minkowski spacetime so the metric determinant factor is just 1.



3 | Twistor Space

We begin our study of twistor space by introducing the two main field equations, and then proceed to give
a definition of twistor space in terms of projective spaces. This will then let us examine the link between
twistor space and spacetime through the twistor correspondence.

3.1 Zero Rest Mass & Twistor Equations

We are familiar with connections from our experiences in GR, however there they are often just introduced
as an operator on tensors with given properties. As we mentioned before, the full construction of connections
come from considering principal G-bundles, and the interested reader is directed to lectures 21-25 of [5].

Ok so given that we have a Levi-Civita connection on our frame bundle over M, ∇a, we recall again
that we can reconstruct any real vector from spinors. In particular, Equation (2.21) tells us that a spinor
field defines a null, anti-self-dual 2-form (up to sign). We therefore can extend our Levi-Civita connection
uniquely to define one on our spin bundles. In order to meet the metric compatibility condition, we require

∇aεBC = 0 = ∇aεB′C′ .

3.1.1 Zero Rest Mass Equations

We can now start to construct spinor field equations, i.e. the spinor equivalent of things such as Maxwell’s
field equations,

∇[aFbc] = 0 and ∇aFab = 0,

where F ∈ Λ2M is the Maxwell field strength tensor. Indeed this is where we start. F is a 2-form, so we
can decompose it into its self-dual and anti-self-dual parts. With the above extension in mind, we consider
the anti-self-dual part,

Wab := Fab + i(?F )ab.

We can then write Maxwell’s equations compactly as the single equation1

∇aWab = 0.

This is all in form language. We convert it into spinors by recalling Equation (2.21), Wab = ΦABεA′B′ , to
give us

∇A′AΦAB = 0. (3.1)

This is an example of a more general set of spinor field equations, known as zero rest mass free field
equations, or just z.r.m equations. In order to "see" the extension, we give another example: a linearised
solution of Einstein’s vacuum field equations in Minkowski space is given by the z.r.m equation

∇A′AΦABCD = 0,

where ΦABCD is totally symmetric [14]. If we then recall that Maxwell’s equations correspond to photons
and Einstein’s equations to gravitons, which have helicities |s| = 1 and |s| = 2, respectively, we argue the
extension is thus.2

1In exterior derivative language, Maxwell’s equations read dF = 0 and d ? F = 0. The contraction with ∇a corresponds to
d, and so we see how this equation contains both.

2We change notation, Φ→ ϕ, from here on, in order to make comparisons with [14] easier.

23
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A symmetric spinor field, corresponding to a field with helicity −s, is a symmetric, 2s index spinor
ϕA...B that obeys the z.r.m equation

∇A′AϕA...B = 0. (3.2)

If the helicity is +s, then we have primed spinor indices instead

∇AA
′
ϕA′...B′ = 0. (3.3)

We will study the solutions to Equations (3.2) and (3.3) in much more detail later.

3.1.2 Twistor Equation

The other important equation we need is the so-called twistor equation. It is simply given by

∇A′ (AωB...C) = 0, (3.4)

where ωB...C is a totally symmetric spinor field.

The first important thing we notice is that if the spinor field ΩB satisfies the twistor equation, i.e.

∇A′ (AΩB) = 0,

then, by considering symmetry and index structure arguments,

∇A′AΩB = −iεABπA′ (3.5)

holds, where πA′ is some other spinor field. The factor of −i is typically only introduced when considering
Lorentzian signature Minkowski spacetime [16]. However here we shall motivate it in a general sense simply
by a redefinition of πA′ , and then see in Section 3.3.4 the role this i factor plays for the specific case of
Lorentzian signature.

From here we make the claim — see Chapter 7 of [14] — that, when our spacetime is (conformally)3 flat,
that the general solution to Equation (3.5) is

ΩA(x) = ωA − ixAA
′
πA′ , (3.6)

where ωA is a constant spinor field, given by the value of ΩA(x) at the origin xAA
′

= 0.4 We call such a
spinor5 ΩA(x) a twistor and the vector space of solutions to Equation (3.6) is our twistor space, denoted T.

We take the xAA
′ ∈ C, so that we are considering complex Minkowski spacetime MC, quoting the motto

"complexify first, ask questions later"[16]. We therefore see that twistor space corresponds to a 4-complex-
dimensional vector space, which we coordinatise with the standard notation (Z0, Z1, Z2, Z3) ∈ C4. We can
write these coordinates in terms of a choice of origin (so that xAA

′
is defined) and by a pair of spinors of

opposite chirality, i.e.6

Zα = (ωA, πA′), α = 0, 1, 2, 3, and A,A′ = 1, 2. (3.7)

To be clear, we replace all 4 coordinates (Z0, Z1, Z2, Z3) with (ωA, πA′). From here, and Equation (3.6), we
may therefore refer to Zα as the twistor. That is Zα defines a point in twistor space, and therefore defines a
twistor ΩA(x).

3This just means up to boundary conditions at infinity.
4Other notation exists, in particular [15] uses a circle above a quantity to indicate its value at the origin. That is Equation (3.6)

is written as ωA =
◦
ω
A
− ixAA′πA′ and πA′ =

◦
πA′ there.

5Henceforth we shall say "spinor" to mean "spinor field" just to save space.
6The reason we express Zα in terms of both ωA and πA′ , rather then just with ΩA is that it makes the algebra of higher-

valence twistors easier to manipulate [15].
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Of course we also have the conjugate and dual twistor spaces, and so we initially expect to have lowered
and primed twistor indices. Indeed we do, however we now note that we can define a pseudo-Hermitian inner
product on twistor space via [14]

Σ(Z) ≡ Z · Z̄ ≡ Σαβ′Z
αZ̄β

′
:= ωAπ̄A + ω̄A

′
πA′ , (3.8)

where Z̄β
′

:= (Zβ)† ∈ T̄ is a conjugate twistor. However, this inner product is non-degenerate, and so it
allows us to identify T̄ with T∗, the dual space to T. In this way, we can forget about primed twistor indices
altogether. In other words, we can view † as a map from T to the dual space T∗ via

Zα = (ωA, πA′) 7→ Z̄α = (π̄A, ω̄
A′). (3.9)

We call Z̄α ∈ T̄ a dual twistor and T̄ is our dual twistor space. It is important to note that it is the twistor
indices, i.e. α, β etc, which do not appear primed; of course the spinor indices, A,B etc, still appear primed
in Equation (3.9). We can remember how this works with the following mantra "to conjugate a twistor, we
conjugate all its spinor parts, and then place each conjugated part into the correct position, namely that
appropriate for a twistor with all original twistor indices at reversed level"[15].

We can use this inner product to split T into three parts:

(i) Σ(Z) > 0 gives T+,

(ii) Σ(Z) < 0 gives T−, and

(iii) Σ(Z) = 0 gives N.7

We will return to these spaces shortly.

3.1.3 Incidence Relations

Before moving on to discuss projective spaces, we introduce "the root of everything interesting about twistor
theory"[16], the incidence relations.

Consider some twistor ΩA(x), and consider the points in MC where such a twistor vanishes. From Equa-
tion (3.6), that is consider the points such that

ωA = ixAA
′
πA′ . (3.10)

We now see why we consider complex Minkowski spacetime: it’s Minkowski as we needed our spacetime
to be (conformally) flat in order to arrive at Equation (3.6), and we require xAA

′ ∈ C for solutions to
Equation (3.10) to exist in general. The incidence relation gives us a relationship between points in twistor
space and points in MC. It is from here that we can begin to view spacetime points as derived concepts
from the twistor algebra. We will explore the geometry of this relationship in more detail after introducing
projective twistor space.

Note that Equation (3.10) is linear and holomorphic, in the sense that no complex conjugated spinors
appear in it. This will prove important in a moment.

We similarly get an incidence relation for dual twistors by taking the dual of Equation (3.10). As we just
explained, this corresponds to just taking the complex conjugation of Equation (3.10), i.e.8

ω̄A
′

= −i(xAA
′
)†π̄A.

We now get a hint at the simplification of including a factor of i in Equation (3.10): it gives us a minus sign
here and so in Lorentzian signature, where (xAA

′
)† = xAA

′
, we may be able to cancel terms in our inner

product Equation (3.8). This will be done more explicitly in Section 3.3.4.
7This notation clearly does not mean the natural numbers but stands for "null". We stick with this notation for consistency

with other notation used, as hopefully no confusion should arise.
8Again we have used that the ordering of indices is not important to us, i.e. xA

′A ∼= xAA
′
.
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3.2 Projective Spaces

Before discussing the geometrical implications of the incidence relation, we first need the notion of a projective
space. A projective space is essentially an equivalence relation on some vector space. For the rest of this
project, unless otherwise specified, we shall take the underlying field for this vector space to be the complex
numbers.

Definition. [Projective Space] Let V be a complex vector space. Then we define the projective space PV
to be the set of equivalence classes on V \ {0V } where the equivalence relation is

x ∼ y ⇐⇒ ∃r ∈ C∗ : x = ry. (3.11)

That is, there is a non-zero complex number that scales y to x.

Claim 3.2.1 . If V is a finite dimensional vector space with C-dimension n, then dimC(PV ) = n− 1.

We do not prove the above claim, but the idea is hopefully clear: the equivalence relation Equation (3.11)
basically ‘compresses’ one C direction. This is why it is called a projective space.

Claim 3.2.2 . If V is a topological space, then the projective space PV , once equipped with the so-called
quotient topology, is also a topological space.9

Notation. If V is a product space, i.e. V = Fn+1, for some field F , then we often denote the corresponding
projective space by FPn, where we note that (n+ 1)→ n between the two.

We shall denote coordinates on our projective spaces with the standard notation Zα := (Z1, ..., Zn). Once
we impose the equivalence relation above, these are actually so-called homogeneous coordinates. That is Zα
is a homogeneous coordinate if

Zα 6= (0, ..., 0) and Zα1 ∼ Zα2 , (3.12)

where the equivalence relation is Equation (3.11).
We will be mainly interested in projective twistor space, PT, which will be related to CP3:

CP3 := {Zα ∈ C4 |Zα 6= (0, 0, 0, 0) & rZα ∼ Zα, ∀r ∈ C∗}. (3.13)

We said related to above, the reason for this will be explained shortly, but for now we simply say that PT
is actually given by an open subset of CP3. The question of "which open set?" is related to the conformal
structure of the spacetime.10

3.2.1 Riemann Sphere

There is another, very important, projective space that will appear in what follows, CP1. This is the
equivalence class of complex lines in C2, with equivalence relation Equation (3.11). This is a 1-complex-
dimensional space, and so a 2-real-dimensional space. By considering the charts

U1 := {(Z1, Z2) ∈ C2 |Z1 6= 0} and U2 := {(Z1, Z2) ∈ C2 |Z2 6= 0},

we can show (by considering the stereographic projection) that this space is isomorphic to the unit 2-sphere
embedded into R3. For this reason we call the projective space CP1 the Riemann sphere. Riemann spheres
are also, of course, just complex lines, and so in this project we will use both "Riemann sphere" and just
"line", when the context is clear.

We should be familiar from our experiences with CFT that the group of automorphisms on the unit sphere
are exactly the Möbius transformations. This comment is made here as it hints at an important relationship
that will follow: Riemann spheres are somehow related to conformal structures.

9For more information on quotient topology, see, e.g., Lecture 4 of [5].
10This is why we have been writing "(conformally) flat" above.
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3.3 Twistor Correspondence

We now want to look at the geometrical links between complex Minkowski spacetime and twistor space.
This ultimate goal falls under the name of the twistor correspondence. It essentially boils down to the
incidence relation. However, as we have introduced the necessary mathematical terminology, we present
a formal definition in terms of a double fibration. For now we will drop this and focus simply on using
Equation (3.10), however later we will return to this double fibration picture.

The twistor correspondence is encoded in the double fibration of the projective spinor bundle, PS,

PS

PT MC

π1π2 (3.14)

where PS is coordinatised by (xAA
′
, λB′)

11 with equivalence relation λB′ ∼ rλB′ for all r ∈ C∗ [16]. Recalling
that the spinor λB′ is 2-dimensional complex valued, we see that the equivalence class λB′ ∼ rλB′ acts as a
coordinate on the projective space CP1, i.e. a Riemann sphere. From here it is clear that PS ∼= MC × CP1,
and so we have the simple projection

π1 : PS→ MC

(xAA
′
, λB′) 7→ xAA

′
.

Now note that if we define

π2 : PS→ PT

(xAA
′
, λB′) 7→ (ixAB

′
λB′ , λA′)

we get a point in PT and have also imposed the incidence relation Equation (3.10); points in PT are given by
(ωA, λA′) with ωA = ixAA

′
λA′ (and then subject to the equivalence relation, which PS has taken care of).

The reason we present this statement of the twistor correspondence is it highlights that it really is a very
geometrical object, as fibre bundles are geometrical objects. However, as we said, we shall forget about this
formal definition for a while, and simply take the incidence relation itself as the twistor correspondence and
see what it can tell us.

3.3.1 MC to PT

Ok firstly let’s look at what the incidence relation can tell us about how a point in complexified Minkowksi
spacetime is mapped to projective twistor space. That is, we want to fix some xAA

′ ∈ MC and ask what this
corresponds to in PT. Well recall that T itself is (a subset of) C4, which we coordinatise with (ωA, πA′). The
incidence relation, ωA = ixAA

′
πA′ , relates two of these four coordinates to the other two (for fixed xAA

′
),

and so we are left with some subset of C2. We then use our previous comment that the projective space of
Kn+1 is KPn, to see that the resulting projective space is CP1. Finally recalling that the incidence relation
is linear and holomorphic, we conclude12

A fixed point xAA
′ ∈ MC corresponds to a linearly and holomorphically embedded Riemann sphere

Lx ∼= CP1 ⊂ PT [16].

We have introduced the notation where the corresponding line (i.e. Riemann sphere) to a point xAA
′
is

denoted Lx. The main thing we want to highlight here is that this correspondence is non-local, in the sense
11We use λB′ for our spinor here to avoid confusion with the projections π1/2.
12It turns out we can actually slightly generalise the above result to say "any holomorphic linear embedding of a Riemann

sphere in (a subset of) CP3 can be put into the form of an incidence relation for some fixed xAA
′
" [16]. The proof of this follows

from the fact that CP1 has the Möbius group as its automorphism group along with the projective rescaling constraint, see
section 1.4 of [16] for more details.
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that a local object (a fixed point in MC) is mapped to an extended object (a line in PT). This kind of
non-locality is one of the big features in twistor theory.

3.3.2 PT to MC

We now want to go the other way; what does a point in PT correspond to in MC? Well we have already
seen that a line in PT corresponds to a fixed point in MC, and we can always represent a point in PT as the
intersection of two (different) lines. This is exactly what we do.

Let Lx, Ly ∈ PT be lines that intersect at point Zα ∈ PT. From from the incidence relation, we have

ωA = ixAA
′
πA′ and ωA = iyAA

′
πA′ ,

where x, y ∈ MC are the corresponding points to the lines Lx, Ly. Subtracting these two from each other, and
using that xAA

′ 6= yAA
′
(as otherwise the two lines are identical and we don’t have a single point in PT), we

obtain
(x− y)AA

′
πA′ = 0 =⇒ (x− y)AA

′
∝ πA

′
,

where the implication arrow follows from our inner product being antisymmetric, i.e. πA
′
πA′ := πB′ε

B′A′πA′ ,
but εB

′A′ is antisymmetric. In particular we have (x− y)AA
′

= λAπA
′
, where λA is an arbitrary spinor [14].

Note that, in the particular case of Lorentzian M, the reality condition xAA
′
, yAA

′ ∈ R imposes λA = πA. We
will use this later when specialising to such cases.

Now we note that (x − y)AA
′
represents a vector (i.e. the tangent to the geodesic connecting x and y),

and we recall that a null vector is decomposed as the outer-product of two spinors of opposite chirality,
Equation (2.7), we see that x and y are null separated.

Two lines in PT intersect if and only if their corresponding MC points are null separated.

Of course we could now use a different line Lw which also intersects Lx and Ly at Zα, and will again see
that w is null separated from both x and y. This essentially corresponds to varying over λA, and the result
is a 2-dimensional totally null plane in MC, i.e. every tangent vector to this plane is null and totally meaning
no spacelike vectors. It also turns out that the tangent bivectors to this plane are self-dual. We call such
a plane an α-plane [14]. If we then repeat the whole procedure, but using the dual incidence relation, we
obtain β-planes, i.e. 2-dimensional null planes who’s bivectors are anti -self-dual.13

MC PT

Twistor
Correspondence

Figure 3.1: Pictorial description of the twistor correspondence. Points in complexifed
Minkowski spacetime, MC, are mapped to embedded Riemann spheres, or lines, in projec-
tive twistor space PT. Conversely, a point in PT is mapped to a totally null 2-plane in
MC, who’s tangent bivectors are self-dual. Such a plane is known as an α-plane.

13We should remark that while α-planes correspond to points in PT, β-planes correspond to 2-planes in PT. This will not be
too important for us, though.
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3.3.3 Null Cones & Conformal Structure

A nice discussion of α/β-planes can be made by considering something known as the Klein quadric, Q4, and
the Plücker embedding of MC into CP5. Unfortunately the discussion of this, naturally involving a lot of
mathematical formalism, will take us too far away from our current goals, and so the interested reader is
instead referred to [4]. The important thing we want from this discussion is that any null line in MC is the
intersection of an α-plane and a β-plane (see Theorem 1.4.1 of [4]). Putting this together with the fact that
α/β-planes are totally null in MC, we conclude that the null cones in MC are fibred by α- and β-planes.

We now note that two points x, y ∈ MC are null separated if only if y lies on x’s null-cone14 (or vice versa).
So the above correspondence tells us that the structure of the null-cone at x ∈ MC is identified in PT by lines
that intersect Lx. Putting this together with the fact that the allocation of a null-cone in every tangent space
of a manifold gives us a conformal structure, we see that the conformal structure of MC is encoded in our
twistor correspondence.

Finally recalling that the correspondence has been purely holomorphic (i.e. no barred spinors have
appeared), we arrive at another ‘moral’ of twistor theory: holomorphic structures on PT encode conformal
structures on MC [16]. As we will shortly explain, we are being a bit too keen here, as null-cones only
determine the conformal structure up to boundary conditions. So really, all we have right now is that the
conformal class is captured by holomorphic structures on PT.

3.3.4 Space Of Null Twistors & Lorentzian Minkowski Spacetime

We can now show an interesting result, which we shall use shortly. Firstly we note that if we are given a
solution to the incidence relation, i.e. given a xAA

′

0 such that

ωA = ixAA
′

0 πA′ ,

we get another solution simply by
xAA

′
= xAA

′

0 + λAπA
′
, (3.15)

where the spinor λA is the same as the one above — i.e. if we denote xAA
′

0 by yAA
′
and we get the above

result.
We get our α-plane by varying λA in Equation (3.15). In general, of course, an α-plane contains no real

points, as we are working with MC. However we now ask the question "what if it does?" W.l.o.g. we take
xAA

′

0 ∈ R to be such a real point on our α-plane. Now contract Equation (3.15) with πA′ ,

xAA
′
πA′ = xAA

′

0 πA′ ,

but the left-hand side is (up to a factor of i) just ωA, by the incidence relation. If we make this substitution
and further contract with π̄A, we get

ωAπ̄A = ixAA
′

0 π̄AπA′ .

Now comes the interesting point: taking the conjugate of this we get

ω̄A
′
πA′ = −ixAA

′

0 π̄AπA′ ,

where we have used that xAA
′

0 ∈ R. However if we then substitute these into our inner product Equation (3.8),
we conclude that the corresponding twistor is null !

So we have that if the α-plane contains a real point the corresponding twistor is null. What about the
reverse? That is, what does a twistor being null tell us about the α-plane? Well it follows from the calculation
that we just did that a null twistor must obey

ωAπ̄A = ia

for some a ∈ R. If we then define
xAA

′

0 =
1

a
ωAω̄A

′
,

14For clarity, this is the complex null cone of MC, not simply the light-cones of Lorentzian Minkowski.
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which is real, we then see immediately that

ωA = ixAA
′

0 πA′ .

So in total we conclude[14]: an α-plane contains a real point if and only if the corresponding twistor is null,
and the α-plane contains the whole null geodesic

xAA
′

= xAA
′

0 + rπ̄AπA
′
, r ∈ R.

So why is this particularly interesting to us? Well recall that earlier we complexified Minkowski spacetime
using the motto that we would "ask questions later". We said all the way back in Section 2.2.2 that we can
get our different signatures by imposing certain reality conditions. In slightly more technical language, we
take a real hypersurface of MC, and which real hypersurface we take determines the resulting signature.

This is exactly what we have just done; we have the hypersurface corresponding to α-planes containing
a real point. We have just shown that these correspond to the null twistors, which once we impose our
projective rescaling gives us the space

PN := {Z ∈ PT |Σ(Z) = 0} (3.16)

known as "the space of null twistors".
Now recall that, for Lorentzian signature, our dual twistors are obtained by Equation (3.9), with the

further constraint xAA
′ 7→ (xAA

′
)† = xAA

′
. Putting this latter constraint together with the results above, we

can conclude that

The space of null twistors, PN, corresponds to the real, Lorentzian signature, hypersurface of MC.

We see that the above construction tells us that the intersection of an α-plane with the Lorentzian
hypersurface M ⊂ MC gives us a single null geodesics. Note it is not a 2-plane of null geodesics, as the
2-planeness came from our freedom in λA, however the condition λA = (πA

′
)† =: π̄A completely restricts this

freedom.
We have only discussed the Lorentzian real hypersurface, but one can make similar arguments to obtain

the Euclidean and split signature hypersurfaces. Details of these results can be found in Chapter 2 of [16].

3.4 Conformal Structures

We now return to the comment we made at the end of Section 3.3.2; the fact that holomorphic structures
on PT encode information about the conformal class of the spacetime. As we have been mainly interested in
Minkowski spacetime, we focus on the class of conformally flat spacetimes.

3.4.1 Compactified Minkowski Spacetime

Recall that a general conformal Killing vector in d > 2 dimensions is given by

Xa = Pa +Mabx
b +Dxa −Bax2 + 2Bbx

bxa,

where Pa are the spacetime translations,Mab Lorentz transformations, D are dilations, and Ba are the special
conformal transformations. If we consider a pure special conformal transformation, then the integral curves
of such a conformal Killing vector are simply

dxa

ds
= 2Bbx

bxa −Bax2,

which we can integrate to give [14]

xa(s) =
xa(0)− sBax2(0)

1− 2sBbxb(0) + s2B2x2(0)
.
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The important thing to note is that the denominator vanishes for finite parameter value, s∗. This tells us
that our vector field Xa is incomplete on M, as it blows up at finite s∗.

Luckily this is easily fixed, we must simply add in the points at infinity. In doing this, the special
conformal transformations then just exchange the points at infinity with other finite points in M. We call this
extended spacetime compactified Minkowski spacetime, and denote it by Mc. We can examine the topology
of Mc using the standard conformal compactification techniques used in obtaining Penrose diagrams. Details
of such techniques can be found in Lecture 23 of [7]. We do not go through the steps here, but simply show
the result diagrammatically.

The Penrose diagram for Minkowski spacetime is given by the shaded region in the following diagram:

X

T

π

−π

π−π

I+

I−

i0

i+

i−

(a) Drawing taken from my notes on [7]. (b) Figure from [14].

Figure 3.2: Diagrammatic representation of the conformal structure of Minkowski space-
time. The Einstein static universe is topologically R × S3, whereas in a) the S3 is com-
pressed to R (so the diagram sits on R2), whereas in b) the ESU is compressed to R×S1,
the cylinder. The shaded region is then Minkowski spacetime. The labelling of the points
is explained below.

Where we have labelled:

• Spacelike infinity, i0,

• Future timelike infinity, i+,

• Past timelike infinity, i−,

• Future null (or lightlike) infinity I+, and

• Past null (or lightlike) infinity I−.

These figures let us see that the compactified Minkowski spacetime is a manifold with boundary, the
boundary being I±. If we want to make our space Mc, we simply identify opposite generators of I− and I+

[14]. In other words, we identify i±,0 as a single point, denoted I. We call I the conformal infinity of the
spacetime, and it is exactly this that allows us to differentiate different spacetimes in the same conformal
class: for Minkowski spacetime we have just shown that I consists of 3 points; whereas for 4-dimensional de
Sitter space — which is conformally flat — I is given by two spacelike S3s [16].

3.4.2 Twistor Space Is Blind To Conformal Structure

We now want to show explicitly that twistor space is blind to the conformal structure; that is the holomorphic
structures on twistor space only tell us about the conformal class of our spacetime. Essentially this amounts
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to us trying to find a linear action of the complexified 4-dimensional conformal group, SL(4,C). Such an
action is given by the generators Tαβ , acting as Zα 7→ Tαβ T

β . The claim is that the linear generators

Tαβ = Zα
∂

∂Zβ

do the job. We get the standard conformal generators via [16]

PAA′ = ωA
∂

∂πA′
, JAB = ω(A

∂

∂ωB)
, J̃A′B′ = π(A′

∂

∂πB′)
,

KAA′ = πA
′ ∂

∂ωA
, and D =

1

2

(
ωA

∂

∂ωA
− πA

′ ∂

∂πA′

)
,

which we can verify satisfy the conformal algebra.
So we have constructed an explicit linear action of the conformal group on PT, which means projective

twistor space is conformally invariant. This is just the statement that PT cannot distinguish between two
spacetimes in the same conformal class. From here it is clear that, if we want to be able to single out MC itself,
we need some structure on PT which is not conformally invariant. Putting this together with the discussion
of the last subsection, it’s clear that this additional structure must have something to do with the points at
infinity in PT. This is exactly what we construct now.

As MC is our ultimate goal, we focus on spacetimes that are conformally flat. The general line element is
given by15

ds2 =
1(

f(x)
)2 dxAA′dxAA′ . (3.17)

Clearly we get MC when f(x) = 1. This is written in spacetime language, but we want to study twistor space,
so the first thing we do is translate this into twistor variables.

The first thing we note is that any line can be defined by specifying any two points on it. In terms of
PT this translates to us being able to specify any line Lx by the antisymmetric product of two points Zα1 , Z

β
2

that lie on the line, i.e. [16]
Xαβ = Z

[α
1 Z

β]
2 .

Then using Equation (3.7) and the incidence relations, we can rewrite this as16

Xαβ = ωC1 ω2,C

(
εAB −xB′A
xA
′

B
1
2ε
A′B′x2

)
. (3.18)

So we see that Xαβ encodes a point in spacetime up to a scale given by ωA1 ω2,A.
We then start from the natural choice of line element

ds2
X = εαβγδdX

αβdXγδ, (3.19)

and the aim is to see how it relates to Equation (3.17). Plugging in Equation (3.18) and going through the
algebra we quickly arrive at

ds2
X =

(
ωA1 ω2,A

)2
dxAA

′
dxAA′ ,

and so we see straight away that ds2
X is conformally flat with conformal factor

f(x) =
(
ωA1 ω2,A

)−1
.

However we have been a bit sloppy: we said above that Xαβ only encodes a point of spacetime up to
scale, and so we must consider it projectively if we want to use them as coordinates for spacetime. This
is the statement that we must treat them as homogeneous coordinates. The problem is then that ds2

X has
homogeneous weight +2 and so is not projectively well-defined, i.e. there is nothing to cancel the scaling of

15We use f(x) to denote the conformal factor rather than Ω(x), in order to avoid confusion with the twistor Ω(x).
16The matrix here is flipped compared to (1.29) in [16] as we our definition of Zα has the unprimmed spinor first, whereas

they have the primed spinor first.
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Xαβ and Xγδ, which we require as the line element is meant to give a physical length. We therefore must
modify ds2

X to give us a projectively well-defined line element. The obvious choice is

ds2
I =

εαβγδ dX
αβdXγδ

(IαβXαβ)2
, (3.20)

where Iαβ is some fixed antisymmetric bi-twistor, i.e. it is a twistor 2-form. Iαβ is known as the infinity
twistor and it is exactly the structure we need to specify in order to break our conformal invariance and so
distinguish two spacetimes in the same conformal class. Let’s see why this is the case.

Equation (3.20) is clearly singular when IαβXαβ = 0. This hypersurface defines the points at infinity in
the usual conformal compactification sense [16]. We can demonstrate this explicitly for the Minkowski case.
Consider the infinity twistor

Iαβ =
1

2

(
0 0

0 εAA
′

)
.

Contracting with Equation (3.18), we simply get

IαβX
αβ =

1

2
ωB1 ω2,Bε

AA′εAA′ = ωA1 ω2,A (3.21)

where we have used εAA
′
εAA′ = 2 and relabelled B → A. Putting this together with Equation (3.19) we see

these factors cancel and we are simply left with

ds2 = dxAA
′
dxAA′ ,

which confirms that we are dealing with the infinity twistor for Minkowski spacetime.
We now need to show that Iαβ captures all the structure at infinity. It follows from Equation (3.21), and

the antisymmetry of our spinor inner product, that our hypersurface IαβXαβ = 0 corresponds to ωA1 ∝ ωA2 ,
or that at least one of them vanishes. Let’s assume neither vanish, then from the incidence relations we have
π1,A′ ∝ π2,A′ , where the proportionality is the same as for the ωs. So in total we have

Zα1 ∝ Zα2 ,

but these Zs lie on the line Lx and so should be understood projectively, and so must correspond to the
same point on Lx. This is now a contradiction because, in order to define Lx in the first place, we needed
Zα1 6= Zα2 .

So we see that at least one ωAi must vanish. W.l.o.g. let’s assume it is ωA1 so that Zα1 = (0, π1,A′). It then
follows immediately from the incidence relations that, if xAA

′
is everywhere finite, π1,A′ = 0. This would

then give us Zα1 = (0, 0), but this is excluded in our definition of a homogeneous coordinate, Equation (3.12).
So the only way we can resolve this problem is to allow xAA

′
to be infinite, which is exactly what we wanted!

That is, lines in PT which satisfy IABXAB = 0 correspond exactly to the points at infinity in MC.
Indeed it is also true that the infinity twistor for Minkowski spacetime is the line in PT, denoted I,

corresponding to spacelike infinity of MC, i0 [16]. Putting this together with the fact that we know that the
intersection of two lines in PT correspond to null separated points in MC, we see that any line that intersects
I corresponds to a point null separated from i0, but these are just the boundaries I±. So in total we see
that the infinity twistor encodes all the information about the points of infinity in MC, and so encodes the
conformal structure.

Finally recall that we said just before Section 3.2.1 that PT is given by an open subset of CP3. Well
we can now answer the question of "which open subset?" Well recall that we want PT to correspond to the
uncompactified Minkowski spacetime, which does not include the points at infinity. Putting this together with
the fact that we’ve just shown that points at infinity of spacetime are given in twistor space by IαβXαβ = 0,
we conclude that PT is given by the open subset of CP3 satisfying IαβXαβ 6= 0 [16].

3.5 Kerr Theorem

Now that we have a understanding of twistor space and it’s geometrical links with spacetime, we take a step
back and talk about null geodesic congruences in order to obtain the important notion of shear.
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3.5.1 Geodesic Congruences

The idea of a null congruence should be familiar from GR. We define a congruence as the integral curves
of some nowhere vanishing vector field. If these integral curves are then geodesics, we obtain a geodesic
congruence, and if these geodesics are in turn null, we get our null geodesic congruence. Intuitively, they are
simply a set of null geodesics each one passing through some region U ∈M.17 We denote the null congruence
as Γ and the individual geodesics by γτ , where τ is a smooth one-parameter label describing which geodesic
we are talking about. As we just explained, we can describe Γ by the null vector fields which the γτ s are
integral curves of. We denote these vector fields `aτ , where a is the tensor index. As the geodesics are null,
we will get the same congruence if we scale them, and so we are free to scale our `aτ .

Geodesic congruences find massive use in GR as they allow us to ask about geodesic deviation. The idea
is to define a so-called Jacobi field via18

η(x) :=
dγτ
dτ

∣∣∣∣
τ=0

,

which tells us how the geodesics neighbouring γ := γ0 behave.19 In other words, η(x) can tell us whether the
geodesics converge or not. This has a clear intuitive link to the curvature ofM, and indeed one can show —
see e.g. Section 3.3.4 of [17] — that

D2ηa ≡ `b∇b
(
`c∇cηa

)
= Rabcd`

bηc`d (3.22)

holds, where Rabcd is the Riemann tensor and we have defined D := `a∇a. Jacobi fields also satisfy

Dηa = ηb∇b`a. (3.23)

3.5.2 Complex Shear

Now comes the interesting bit, we have demonstrated that we can trade a real null vector field with a spinor
field via Equation (2.7). We do just this, and denote the spinor corresponding to `a by oA. The geodesic
equation translates to20 [14]

D`a = k`a =⇒ oADoA = 0. (3.24)

We then use that we can fix the scale of `a, and so the scale of oA, to demand that each geodesic actually
obeys

DoA = 0. (3.25)

Recalling that oA defines a null flag, i.e. a flagpole and flagplane, we see that Equation (3.25) corresponds
to parallel transport of the null flag along γ.

We now introduce another spinor, ιA satisfying

oAι
A = 1 and DιA = 0. (3.26)

These two spinors define a dyad in spin space. We then recall Equation (2.14) and define ma := oAῑA
′
and

m̄a := ιaōA
′
, which we have already shown are complex null vectors. We can then use Leibniz along with

Equations (3.25) and (3.26) to obtain

Dma = 0 and Dm̄a = 0. (3.27)

So we see that these complex null vectors are parallelly propagated along our null curve γ. On top of this,
they are both orthogonal to `a. Now, as ma and m̄a are linearly independent, they span a null 2-plane which
is orthogonal to γ. We call this space screen-space and denote it S.

17We work with a generic spacetime manifoldM until otherwise specified.
18This η(x) is not the Minkowski metric. This notation is just used to make comparisons with [14] easier. Other standard

notation exists, including J(x) and S(x).
19We will now focus on this specific geodesic, and so drop the τ label.
20Note that here we have used that we can uniquely extend our spacetime connection to one on spinors, as described at the

start of Section 3.1, and so the D acting on oA is well defined.



CHAPTER 3. TWISTOR SPACE 35

Next we note that if ηa is orthogonal to `a, our neighbouring geodesics are "abreast in time". That is, the
hypersurface that ηa lies in defines a time-slice (from γ’s rest frame) of the congruence. This hypersurface is
exactly our screen space, and so such a Jacobi field can always be written as

ηa = z̄ma + zm̄a z ∈ C.

We now use Equations (3.23) and (3.27), and contract with ma (using mam
a = 0, as it’s null) to obtain

m̄amaDz = zmam̄b∇b`a + z̄mamb∇b`a.

Now we recall that m̄ama = −1, Equation (2.15), to finally obtain

Dz = −ρz − σz̄, (3.28)

where we have defined [14]

ρ = mam̄b∇b`a = oAm̄b∇boA,
σ = mamb∇b`a = oAmb∇boA.

(3.29)

The important thing we have just shown is that the behaviour of neighbouring geodesics relative to each
other is given by two complex functions, ρ and σ. We now want to investigate the effects of each.

Consider a circle, C, of geodesics around γ initially given by

z = εeiϕ

for some small parameter ε and 0 ≤ ϕ < 2π. Moving a small parameter distance δλ along γ gives

δz = −(ρz + σz̄)δλ. (3.30)

We now consider the effects of ρ and σ separately:

(i) First consider the case when σ = 0 and ρ = Reiψ, where R ∈ R+. Then Equation (3.30) gives

z = εeiϕ 7→ z + δρz = εeiϕ(1−Reiψδλ).

Physically, this corresponds to the radius of C decreasing by a factor (1 − R cos(ψ)δλ) and rotating
(relative to γ) by a factor R sin(ψ)δλ.

So we see that ρ captures information about the convergence and rotation of C.

(ii) Now let’s consider the case σ = |σ|e2iψ and ρ = 0. Then Equation (3.30) gives

z 7→ z + δσz = ε
(
eiϕ − |σ|ei(2ψ−ϕ)δλ

)
. (3.31)

It is less easy to see what this means, and so we need to manipulate it further. The idea is that z ∈ C
and so we can express the above as

z + δσz = eiψ(x+ iy),

where the factor of eiψ is included to make the result nicer (it is simply a rotation of the (x, y) coordinates
and so changes nothing). If we substitute Equation (3.31) into this and then solve for x and y we obtain

x = ε(1− |σ|δλ) cos(ϕ− ψ) and y = ε(1 + |σ|δλ) sin(ϕ− ψ).

This is the equation for an ellipse with major/minor axes ε(1 ± |σ|δλ), respectively. On top of this
we note that, to this order, the area of C is unchanged. So we have essentially "squashed" C into an
ellipse. This is clearly just a kind of shear, and we call σ the complex shear.
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σ = 0, ρ = Reiψ σ = |σ|e2iψ, ρ = 0

Figure 3.3: Effects of ρ and σ (Equation (3.29)) on a circle of null geodesics, C, in a
geodesic congruence, as we move a small parameter distance δλ along the centred geodesic.
Left: ρ controls the convergence and rotation of C, as indicated by the arrows. The
convergence is given by (1−R cos(ψ)δλ) and the rotation by R sin(ψ)δλ. Right: σ is the
complex shear and results in an ellipse of equal area to C. The major/minor axes are
ε(1± |σ|δλ), respectively.

The interesting quantity to us is the complex shear. Using the results from above, and introducing the
spinor versions of the Weyl tensor and Ricci curvature, we can show (see chapter 6 of [14]) that the null
hypersurface generated by our null vectors `a admit a conformal metric if and only if the generators of the
hypersurface are shear-free. Such generators are called geodesic-shear-free (g.s.f.), and must obey

oADoA = oAoB ōB
′
∇BB′oA = 0, and σ = oAoB ῑB′∇BB′oA = 0,

which are just the geodesic, Equation (3.24), and vanishing shear, Equation (3.29), conditions expressed
purely in terms of spinors (i.e. we used ma = oAῑA

′
etc). We can clearly just combine these two conditions

into the single g.s.f. condition
oAoB∇BB′oB = 0. (3.32)

The other important thing to note about shear is that is has a link to the complex analyticity of our
congruences. We can see this from the above condition by showing that there is a link between a 2-dimensional
complex manifold having a conformal metric and having what is known as a complex structure. However we
can also see the link simply by the fact that if σ = 0 then the z̄ dependence drops out of Equation (3.28);
the motion of the congruence on S is holomorphic if and only only if the generators are shear-free.

Before moving on to discuss the Kerr theorem, we should state that it turns out that satisfying the shear-
free condition is highly restrictive in non-flat spacetimes [14]. We do not go through the details here, but
simply make this point to further justify why we have been considering (conformally) flat spacetimes, and so
now again specialise toM = MC.

3.5.3 Kerr Theorem

We are now in a place to introduce a very important theorem when it comes to trying to solve the z.r.m.
equations, Equation (3.2). It goes by the name Kerr Theorem, and we introduce it as follows.

A general analytic function f(Zα) is not well-defined on PT. The reason for this is simply that PT
is defined projectively, and so if we want a well-defined function f(Zα), we require it to have a definite
homogeneous degree, i.e.

f(rZα) = rdf(Zα),

where d is the homogeneous degree of f . Suppose we have such a well-defined function, and consider its
zero set, i.e. the set {Zα|f(Zα) = 0}. This defines some 3-dimensional (as there are 4 components in Zα,
but we loose one by the zero set condition) hypersurface in PT. If we want to talk about what this set
encodes in Lorentzian Minkowski spacetime, we must take the intersection of this hypersurface and PN, as
per Section 3.3.4. We denote this intersection by K, and it defines a congruence of null geodesics in M.
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The Kerr theorem then states that this congruence, K, is shear-free and that all analytic g.s.f.
congruences arise in this way [14].

We do not prove the Kerr theorem here, but a proof (using a tetrad formalism) can be found via [18].

3.5.4 Robinson Congruence

Before moving on to discuss the solutions to the z.r.m. solutions, it is instructive for us to give a simple, but
very important, example of the application of Kerr’s theorem.

Consider the twistor function
f(Zα) = AαZ

α,

where Aα = (AA, A
A′) is a dual twistor. Then our zero set condition gives us(
iAAx

AA′ +AA
′)
πA′ = 0 =⇒ πA

′
= k

(
iAAx

AA′ +AA
′)
.

If you then plug through a bit of slightly messy algebra — see chapter 7 of [14] — we can show the integral
curves are circles on a torus. However they are not the ‘normal’ circles defining T = S1 × S1 (i.e. the circles
that you get by intersecting a torus with the x and y axes), but instead these circles twist around the torus
and all link together.

The twisting behaviour is determined by a quantity

a := −1

2
AαĀ

α.

The details are not important for us, apart from that we note that a = 0 iff the dual twistor is null.

• When the dual twistor is null, the congruence degenerates, and so by our "two points are null separated
iff the corresponding twistors meet" we see that the spacetime picture corresponds to a congruence of
null geodesics which all meet the null geodesic defined by the dual twistor Aα.

• If a 6= 0, and so the dual twistor is non-null, the geodesics fail to meet, and instead they twist around
the torus, see Figure 3.4. The light rays corresponding to this non-null case are called a Robinson
congruence, and it is this twisting nature that gives twistor theory its name.

Figure 3.4: A depiction of a Robinson congruence. A light ray is depicted by a point in
R3 with the arrow indicating the direction of motion [11]. Figure taken from [15].



4 | Sheaf Cohomology

Recall that, all the way back in Section 1.2.4 we introduced the notion of deRham cohomology as the
equivalence classes of closed forms modulo exact forms. As we mentioned then, and as the title of this chapter
suggests, deRham cohomology is just one particular type of cohomology. While deRham cohomology plays
a huge role in algebraic topology, twistor theory is more concerned with what is known as sheaf cohomology.
Just as deRham cohomology measures the number of ‘holes’ in a space, sheaf cohomology measures the
distinction between local and global information [14]. However in order to properly understand the latter,
we need to introduce the terminology of general cohomology theory. We will use the nice geometric notions
of deRham cohomology to help keep us grounded. We will work off the definitions/explanations given in [6],
as well as the other references provided so far.

4.1 Cohomology Terminology

4.1.1 Exact Sequences

The first notion we need is that of an exact sequence. Consider a sequence of vector spaces, {Vi}, connected
by linear maps ϕi : Vi → Vi+1:

. . . Vi−1 Vi Vi+1 . . . .
ϕi−2 ϕi−1 ϕi ϕi+1

We say that the maps are exact at Vi if imϕi−1 = kerϕi, where im/ ker stand for image and kernel, respectively.
It immediately follows from this that if our maps are exact at Vi then ϕi ◦ ϕi−1v = 0 for all v ∈ Vi−1. The
sequence itself is called exact if it is exact at all Vi.

There is a particularly interesting type of exact sequence, known as a short exact sequence given by

0 V1 V2 V3 0,
ϕ0 ϕ1 ϕ2 ϕ3 (4.1)

where 0 denotes the zero-dimensional vector space containing simply the zero vector. Short exact sequences
are interesting as one can easily show1 that Equation (4.1) is exact iff ϕ1 is injective and ϕ2 is surjective. In
particular this tells us that if the sequence

0 V W 0,
ϕ

is exact then V ∼= W . A sequence that is not short is called long.

4.1.2 Differential Complexes

It is not a coincidence that the word "exact" has appeared both in our definition of deRham cohomology and
in the context of exact sequences. To make the connection we introduce the notion of a differential complex.

Let C = ⊕i∈ZCi be a direct sum of vector spaces Ci. If we equip C with a set of linear maps di : Ci → Ci+1

such that di+1 ◦ di = 0, then we call the complete construction a differential complex. We refer to di as the
i-th differential of the complex.2 Of course we can represent a differential complex as a sequence

. . . Ci−1 Ci Ci+1 . . . ,
di−2 di−1 di di+1 (4.2)

1Using the result that injectivity of a map φ : V →W is given provided kerφ = {0V }.
2We should note that di need not be a derivative in the familiar sense of undergraduate calculus.

38
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subject to imdi ⊆ ker di+1. It is important to note that Equation (4.2) need not be exact, and indeed this is
the whole point.

We then define the subspaces

Zi(C) := ker di and Bi(C) := imdi−1,

who’s elements are known as i-cocycles and i-coboundaries, respectively.3 This notation should look familiar
from Section 1.2.4, and we define the cohomology of C via

H(C) :=
⊕
i∈Z

Hi(C) where Hi(C) := Zi(C)/Bi(C).

The cohomology measures exactly how much the complex Equation (4.2) fails to be exact. We can ground
this information by noting that the deRham cohomology is simply the cohomology of the complex (Λ•M, d),
with d being the exterior derivative, and where we have used the standard notation of a superscript • to
indicate some labelling index (i.e. • here covers all 0 ≤ p ≤ dimM).

As with any algebraic structure, we can define a natural notion of homomorphism (i.e. "structure preserv-
ing maps") between two such structures. For two complexes, (A, dA) and (B, dB), such a homomorphism,

ϕ : (A, dA)→ (B, dB),

is called a chain map. Once familiar with how to construct homomorphisms, it is easy to convince ourselves
that a chain map should be a vector space homomorphism

ϕi : Ai → Bi satisfying ϕi+1dA,i = dB,iϕi,

as this results in a commutative diagram

. . . Ai−1 Ai Ai+1 . . .

. . . Bi−1 Bi Bi+1 . . .

di−1

ϕi−1

di

ϕi ϕi+1

di−1 di

(4.3)

where we have dropped the A/B subscript on our differential maps, as they should be clear from context.

Claim 4.1.1 . A homomorphism between complexes gives rise to a homomorphism between cohomology
groups, namely Equation (4.3) gives rise to a linear map αi : Hi(A)→ Hi(B) for all i ∈ Z.

Proof. Omitted. See exercise 4.4 of [6] for some good hints.

There is one final result we need before moving on to construct our sheaf cohomology. It concerns the
cases when we have a short exact sequence of complexes

0 Ai Bi Ci 0,
ϕi ψi

where ϕ : A→ B and ψ : B → C are chain maps, and the above short exact sequence is true for each i ∈ Z.
This gives us a short exact sequence of complexes, which we denote diagrammatically via

0 Ai+1 Bi+1 Ci+1 0

0 Ai Bi Ci 0

0 Ai−1 Bi−1 Ci−1 0

ϕi+1 ψi+1

ϕi

di

ψi

di di

ϕi−1

di−1

ψi−1

di−1 di−1

3A nice way to remember which is which is to recall that geometrically the exterior derivative gives a boundary, so something
in the image of d is a coboundary.
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The reason this is important is that such a short exact sequence of complexes gives rise to a long exact
sequence in cohomology (the "snakeness" of the diagram is standard)

Hi+1(A) Hi+1(B) . . .

Hi(A) Hi(B) Hi(C)

. . . Hi−1(B) Hi−1(C)

αi+1 βi+1

αi βi

δi

αi−1 βi−1

δi−1

(4.4)

where αi : Hi(A) → Hi(B) and βi : Hi(B) → Hi(C) are the induced cohomology homomorphisms, as per
Claim 4.1.1, and the δi : Hi(C) → Hi+1(A) are known as the coboundary operators. The whole trick to
proving this result lies in defining the coboundary operators well. This can be a lot of work to check, and so
such a proof is omitted, but details can be found at the end of section 4.4 of [6].

The above constructions find use in deRham cohomology, where one splits a manifold into two, overlap-
ping, open submanifolds and forms a short exact sequence of complexes in terms of the allowed differential
forms. This then leads to a long exact sequence in deRham cohomology, so given that we know the coho-
mology of the submanifolds (which are normally taken to be simple things like Rd or Sd), we can compute
the deRham cohomology of the more complicated space. This is exactly the Mayer-Vietoris sequencing we
mentioned back in Section 1.2.4. For more details on this construction, see section 4.5 of [6].

4.2 Sheaf Cohomology

4.2.1 An Introduction To Germs & Sheaves: Complete Analytic Functions

In order to develop our sheaf cohomology, the first thing we need to introduce is the concept of a topological
germ. We can give a more general definition of these using the language of functors in category theory — see
[19] for more details — however this will naturally lead us too far off track. We therefore introduce germs
via a particular example of complete analytic functions.

The basic idea of a germ is to extend the support of a function to a larger region. The obvious example is
that of analytic continuation of a complex function. This is something that should be familiar from complex
analysis, where we know that problems can arise. The typical example being when one analytically continues
a complex logarithm, we get a multi-valued function, see Figure 4.1. We therefore need some way to deal
with this mutli-valued-ness when analytically continuing. The natural thing to try is to impose some form
of equivalence relation on the different branches.

Definition. [Function Element] Let f : D → C be an analytic function with domain D. Then we call the
double (f,D) a function element.

So the idea to constructing our germ is to extend the domain D while keeping f well defined, i.e. single
valued. First we extend the domain. Let (f1, D1) and (fn, Dn) be two function elements. We say that they
are equivalent if there exists a sequence of function elements with overlapping domains going from D1 to Dn,
such that the functions agree on the intersection [14]. That is (f1, D1) ∼ (fn, Dn) iff there exists

{(f2, D2), ..., (fn−1, Dn−1)} such that Di ∩Di+1 6= ∅ and fi|Di∩Di+1 = fi+1|Di∩Di+1 (4.5)

where i = 1, ..., n − 1 (so the above includes D1 and Dn). We call the equivalence classes above complete
analytic functions (c.a.f.), and we see that we have done nothing to ensure that the c.a.f. is not multivalued.
For example, the domains in Figure 4.1 are the axes running from −5 to 5, and we see that the function is
multivalued (the different spirals).

So what do we do? Well each point on the graph corresponds to two pieces of information: the point
in the domain, z ∈ ∪iDi, and the resulting value f(z). We cannot alter the later without changing the
function we are considering, and so instead we must somehow alter the way we ‘patch together’ the different
Dis. With a little thought we see that if we took the disjoint union, then we could distinguish zi ∈ Di from
zj ∈ Dj , even if they correspond to the same point in ∪iDi.
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Figure 4.1: A plot of the (imaginary part of) the analytic continuation of the complex
logarithm. The colours indicate the different branches. Image from [20].

This works great, as it allows us to separate the different ‘spirals’ in Figure 4.1, however we now run into
a problem of over-counting. Namely, on the non-vanishing intersections Di∩Di+1 we get two copies of all the
points, even though f was single valued in this region. This will clearly make the resulting space, which we
denote R, too big. However we now simply remember that each Di comes with an fi, and so we can reduce
R by imposing zi ∼ zj whenever there is a neighbourhood around the point such that fi = fj throughout
this neighbourhood. Note this will only remove the over-counting as it is the values fi(z) and fj(z) we want
to agree, and these values disagree exactly where f is multivalued. So in total we have a single valued, c.a.f.
f : R → C. We call the space R the Riemann surface of f . Now it is clear that the analytic extension
of some function element (f,D) is not unique, as the continuation happens locally. That is Equation (4.5)
only depends on the local information on the intersections. We can generalise this notion then to include all
possible analytic continuations of (f,D), which is precisely the notion of a germ.

Definition. [Germ of f at z] Let (f,D) be a function element with z ∈ D. Then the germ of f at z is
the set of all function elements (fi, Di) such that z ∈ Di and there exists an open neighbourhood around
z such that fi = f on this neighbourhood. We denote the germ of f at z as [f, z].

To clarify, a germ of f at z is basically every possible continuation of f to some bigger domain. As we were
careful to say, the germ is defined at z. Of course we can take some element from the germ (f ′, D′ := D∪Di)
(i.e. a particular extension of (f,D)) and use that as a new function element to define a germ of f ′ at
z′ ∈ D′ \ D, i.e. around a point not in the original D. In this way we continue to extend our function
element, just as we did in Equation (4.5).

Definition. [Sheaf] A sheaf (of analytic functions on C)4 is the set of all germs at all points z ∈ C. We
denote the sheaves by O.

Our sheaves, therefore, correspond to every possible c.a.f. on C. By defining a map

π : O → C

[f, z] 7→ z,

one can show that O is in fact a one-dimensional complex manifold [14]. The interesting point is that the
connected components of O correspond to the different Riemann surfaces. This is seen simply from the fact
that if (f,Df ) and (g,Dg) are two function elements whose germs, [f, zf ] and [g, zg], are connected by some
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path γ : I → O then, by definition of O, we can continually deform (f,Df ) into (g,Dg). However this is the
statement that (f,Df ) ∼ (g,Dg), and so they define the same c.a.f., and so must correspond to the same
Riemann surface.

This has all been a bit abstract, so we can ground ourselves again by relating it to something we are
a bit more familiar with, bundles. Going back through the definitions we see that a sheaf is essentially —
we shall point out a subtle difference in a moment — a bundle where the base space is C and the fibre at
z ∈ C are all the possible values f(z). Of course we need to impose that if we take some domain D ⊆ C
that moving through the fibres gives us our function element (f,D). Well this ‘moving through the fibres’ in
bundle language is given by a section s : D → O, i.e. (π ◦ s)(z) = z for all z ∈ D. Indeed we can obtain our
individual function elements in exactly this way, as per the following theorem.

Theorem 4.2.1. Let O be the sheaf of analytic functions over C. Then for any domain D ⊆ C there is a
one-to-one correspondence between sections s : D → O of π : O → C and function elements (f,D), such that
f(z) = (σ ◦ s)(z) for all z ∈ D, where

σ : O → C

[f, z] 7→ f(z).

Proof. See page 74 of [14].

4.2.2 General Sheaves

We now want to generalise the notion of a sheaf outside its applications to complete analytic functions. We
do this first by giving a perhaps more abstract definition via the introduction of so-called presheaves, as per
[4]. We will then argue how this definition can be recast in a more bundle-familiar looking way, as per [14].

Definition. [Presheaf [4]] Let X be a topological space, and U ⊆ X be an arbitrary open set. A presheaf
of abelian groups,5 S, on X is an assignment

U → S(U),

where S(U) is an abelian group. This must also satisfy: given the inclusion of two open sets, V ⊆ U ⊆ X,
there are restriction homomorphisms

rUV : S(U)→ S(V ) (4.6)

which must satisfy
rVW ◦ rUV = rUW , and rUU = 1,

where W ⊆ V ⊆ U .

If {Uα} is a collection of open sets in X, whose union we denote U := ∪αUα, then we denote the restriction
of s ∈ S(U) to S(Uα) by sα, i.e.

rUUα : S(U)→ S(Uα)

s 7→ sα.

Definition. [Sheaf [4]] A sheaf is a presheaf, S, that also satisfies: if {Uα} is a collection of open sets in
X with union U := ∪αUα, then if

(i) (Gluing): there exists a sα ∈ S(Uα) and a sβ ∈ S(Uβ) that agree on the overlap,

rUαUα∩Uβ (sα) = r
Uβ
Uα∩Uβ (sβ) ∀α, β,

then there exists a s ∈ S(U) such that

rUUα(s) = sα ∀α.

(ii) (Locality): there exists s, s′ ∈ S(U) which satisfy

rUUα(s) = rUUα(s′)

for all α, then s = s′.
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It is hopefully clear how these defintions link to the example of c.a.f.s, in particular comparing the gluing
condition to Equation (4.5), we see that the elements of S(Uα) are the function elements over Uα, and s is
the c.a.f. over U .

Although this definition is reasonably intuitive, it will prove very beneficial for us to reword it. We do
this by a simple extension of Theorem 4.2.1, namely we see that S(U) is simply the group of sections over
U . This gives us a more "bundle-looking" formalism.

Definition. [Sheaf [14]] Let X be a topological space. A sheaf, S, over X is a topological space together
with a projective mapping π : S → X satisfying

(i) π is a local homeomorphism,

(ii) The stalks Sx := preimπ(x) are abelian groups,6

(iii) The group operations are continuous.

We have already given the explicit example of a sheaf of complete analytic functions over some complex
manifold, but there are plenty of other sheaves. That is our function elements need not be analytic functions,
but some other structure over X. The most common are:7 if X is a

• Differential manifold:

(i) A(U): the sheaf of C∞ functions on U .

(ii) Ap(U): the sheaf of smooth p-forms on U .

(iii) Zp(U): the sheaf of smooth, closed p-forms on U .

• Complex manifold:

(i) O(U): the sheaf of holomorphic functions (i.e. our c.a.f.s).

(ii) Ωp(U): the sheaf of holomorphic p-forms.

(iii) Ap,q: the sheaf of smooth forms of type (p, q) — this means that the form (on twistor space, say)
contains p dZαs and q dZ̄αs, all wedged together.8

(iv) Zp,q(U): the sheaf of smooth, ∂̄-closed forms of type (p, q).

4.2.3 Sheaf Homomorphisms & Sheaf Cohomology

As always, now that we have our algebraic structures, it is useful to talk about the structure preserving maps,
i.e. our sheaf homomorphisms. We define these in a natural manner, i.e. if S and T are sheaves over the
same topological space X, then a map

ϕ : S → T (4.7)

is a sheaf homomorphism if the restriction of ϕ to the open sets V ⊆ U ⊆ X is compatible with the restriction
homomorphisms. That is the following diagram commutes.

S(U) T (U)

S(V ) T (V ).

ϕU

rUV rUV

ϕV

In terms of the "bundle-like" definition, Equation (4.7) is a sheaf homomorphism if it preserves the stalks
and is a group homomorphism on each stalk, i.e.

ϕx : Sx → Tx (4.8)
7We use the notation from [14]. Other notations exist, for example [4] uses Ep(U) for the sheaf of smooth p-forms on U .
8See exercise 9d of [14] for more info.
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is a group homomorphism for all x ∈ X.
Why are sheaf homomorphisms of interest to us? Well we now note that the exterior derivative

d : ΛpM→ Λp+1M

is in fact a sheaf homomorphism between Ap and Ap+1. This gives us the exact sequence of sheaves

0 A0 A1 . . . AdimM 0,d d d d d

where 0 is the zero sheaf at the corresponding level. This example makes it clear that we can construct
certain cohomologies from sheaf homomorphisms. In particular, if we have a short exact sequence of sheaves

0 S T R 0,
ϕ ψ

then we get a long exact sequence in sheaf cohomology, as per Equation (4.4).
The interesting point for us to notice is that Equation (4.8) let’s us express an exact sequence of sheaves

locally. That is, we could just as well written the short exact sequence above as

0x Sx Tx Rx 0x.
ϕx ψx

As we said at the beginning of this chapter, sheaf cohomology tells us how this local geometrical information
translates to global information. We can see this most easily using exactly our short exact sequence example.
If U ⊆ X is some open neighbourhood around x ∈ X, the long exact sequence in cohomology will be of the
form

0 S(U) T (U) R(U) H1
Sheaf(S, U) . . . ,

ϕ

where we have used that the 0-th class are exactly the sections of the sheaves, i.e. H0
Sheaf(S, U) = S(U) etc.

So we see that H1
Sheaf(S, U) is measuring the failure of the map ϕ : T (U)→ R(U) to be surjective. That is

if H1
Sheaf(S, U) = 0, then we get a short exact sequence in sections and so ϕ is surjective.
A standard example is to look at the short exact sequence of sheaves

0 Z O O∗ 0,i e

where Z is constant the sheaf of integers over X and O∗ is the sheaf of non-vanishing holomorphic functions
on X with the group operation being multiplication, and where i is an injection and e([f, z]) := [exp(2πif), z].
One can show that this is indeed a short exact sequence of sheaves, however if we consider the sequence of
sections

0 Z(U) O(U) O∗(U) 0,

problems can arrive at the last step, precisely because H1
Sheaf(O∗, U) need not vanish. See page 76 of [14] for

details.

4.3 Čech Cohomology

We now want to discuss the cohomology group which will prove vital for solving the z.r.m. field equations.
It is known as the Čech cohomology group and is defined as follows.

Definition. [p-Simplex & p-Cochain [4]] Let X be a topological space with open cover9 U := {Ui}. Also
let S be a sheaf on X. We call the ordered collection of (p + 1) open sets with non-empty intersection,
σ = (U0, ..., Up), a p-simplex. We denote the intersection, known as the support of σ, by

|σ| := U0 ∩ ... ∩ Up.

A p-cochain of U w.r.t. S is then a mapping

f : σ → S(|σ|).
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We denote the set of p-cochains of U w.r.t. S by Cp(U ;S). It is easy to convince ourselves that the
abelian group structure is inherited from the sheaf to Cp(U ;S). For simplified notational reasons, we will
adopt the notation of [14], and denote the support by

Ui...j := |σ| = Ui ∩ ... ∩ Uj ,

and similarly we denote an element of the p-cochain by

fi0...ip := f(σ).

For clarity, a p-cochain is actually a collection {fi0...ip}, one for each non-empty support |σ|. However, in
order to follow the terminology/notation of [14], we will just refer to fi0...ip as the cochain itself.

This all seems rather daunting, however it turns out that one rarely needs to consider p > 3 [14], and so
we find some peace in that fact.

We can turn the cochain groups C•(U ;S) into a cochain complex by defining a coboundary map. This is
just the differential of the complex, i.e. a mapping

δp : Cp(U ;S)→ Cp+1(U ;S) satisfying δp+1 ◦ δp = 0.

This is accomplished by considering the (p + 1)-simplex, σ = (U0, ..., Up+1), and forming a p-simplex by
omitting one of the subspaces, i.e.

σi := (U0, ..., Ûi, ..., Up+1),

where the hat means "omit this". Our coboundary operator is then given by

δpf(σ) =

p+1∑
i=0

(−1)i r
|σi|
|σ| f(σi), (4.9)

where r|σ||σi| is a restriction homomorphism, Equation (4.6).10 We stress that the sum in Equation (4.9) is
w.r.t. to the group operation inherited from the sheaves. That is it need not be addition in the usual sense,
but could be multiplication. Indeed when discussing when a manifold admits a spin structure, one considers
the constant sheaves Z2 with group operation given by multiplication. In this way we define the so-called
Stiefel-Whitney classes. More details on this can be found in Section 11.6.3 of [8].

This looks a bit overwhelming, but if we consider the case of p = 0 we see that we simply have

δ0f(U0, U1) = f(U1)
∣∣
U0∩U1

− f(U0)
∣∣
U0∩U1

.

If we then use the notation conventions of [14] we can write Equation (4.9) as

δp(fi0...ip) = (p+ 1)ρ[ip+1
fi0...ip],

where ρifj...k meaning "restrict fj...k to Uij...k", and where the factor of (p+ 1) is included to account for the
antisymmetrisation brackets.

This rewriting makes it clear that δp+1 ◦ δp = 0, as we will be antisymmetrising on two restrictions, and
so the result must vanish. This completes the proof that we indeed have a complex. We then define the our
p-cocycle and p-coboundary spaces

Zp(U ;S) := ker δp and Bp(U ;S) := imδp−1,

respectively. We then finally arrive at our pth Čech cohomology

Ȟp(U ;S) :=
Zp(U ;S)

Bp(U ;S)
.

10Note that |σ| ⊆ |σi|, as the former has an extra intersection.
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4.3.1 Refinements

Before moving on to discuss specific examples, we should address the elephant in the room: the constructions
above appear to depend explicitly on which open cover U we use. Our experiences with GR tell us that it
is not a good idea to build a theory around an essentially arbitrary choice of open sets. That is if we had
some other open cover V of X, how do we know if Ȟp(U ;S) = Ȟp(V;S)? The answer to this question is
to introduce what is known as a refinement. This is basically a mapping that takes our initial open cover,
say U , to some new open cover, say W, subject to the condition that for all Wi there exists a Uj such that
Wi ⊆ Uj . If we denote the indexing set for W and U by I and J , respectively, then our refinement mapping
is

r : I → J such that Wi ⊆ Ur(i) ∀i ∈ I.

One can show that this induces a mapping on the cochain in the reverse direction,

r∗ : Cp(U ;S)→ Cp(W,S).

In fact one can also show that r∗ commutes with the coboundary operator and so is in fact a map on the
cohomology classes,

r∗ : Ȟp(U ;S)→ Ȟp(W,S).

This is an example of what is known as a pullback, and the reader may be familiar with such a mapping in
relation to deRham cohomology; here the refinements are diffeomorphisms and the pullback is best thought of
as the dual to the so-called push forward (which pushes vector fields in the direction of the diffeomorphism).

The claim is that if W is a common refinement to both U and V, we can use the related mappings,
r∗U : Ȟp(U ;S) → Ȟp(W,S) and r∗V : Ȟp(V;S) → Ȟp(W,S), to map the cohomology classes to a common
space. We can then compare them on this space to see if they agree. This allows us to define a new
equivalence relation on the different cohomology classes; if [f ] ∈ Ȟp(U ;S) and [g] ∈ Ȟp(V;S) then [f ] ∼ [g]
if r∗U [f ] = r∗V [g], and so we say Ȟp(U ;S) ∼ Ȟp(V;S).11 We then finally define Ȟp(X;S) to be the set of such
equivalence classes, thus removing the dependence of any particular open cover.

Of course this is a lot of work to check for any given Čech cohomology, and it would be much nicer to be
able to use a specific open cover without the fear of open-cover-dependent results. The analogy in GR would
be trying to express all of your calculations without using coordinates anywhere, or at least checking that
your steps could be expressed in any equivalent coordinate system. Luckily, the following theorem exists [21].

Theorem 4.3.1 (Leray). Let X be a topological space with sheaves S, and let U be an open cover of X.
Then if Ȟp(Ui0...in ;S) = 0 for all p > 0 and all (i0, ..., in), then we have the canonical isomorphism

Ȟp(X;S) ∼= Ȟp(U ;S) ∀p ≥ 0. (4.10)

Such a cover is referred to as a Leray cover.

Proof. See page 193 of [22].

4.3.2 Twistor Space

We now want to consider a Čech cohomology group that will be of more direct use to us. Indeed we will see
that this group will be isomorphic to the solutions of the z.r.m equations.

Recall that the subspaces

U0 = {[π0′ , π1′ ] ∈ CP1 |π0′ 6= 0} and U1 = {[π0′ , π1′ ] ∈ CP1 |π1′ 6= 0}

form an intersecting open cover of CP1. We can therefore use them to construct a Čech cohomology group,
in particular we want to consider the group with sheaves given by c.a.f.s, Ȟ•(U ;O).

The 0-th cohomology group, Ȟ0(U ;O), is simply the space of analytic functions fi on domains Ui, subject
to the cocycle constraint

ρ1f0 = ρ0f1,

11Some authors actually reserve theˇ to indicate this equivalence class. That is they simply write the Čech cohomology classes
for an open cover as Hp(U ;S), whereas the equivalence classes as here are Ȟp(X;S).
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i.e. they agree on the overlap U01 := U0∩U1. This gives us a global analytic function on CP1 (of homogeneity
0), and so by Liouville’s theorem, it must be constant [14]:

Ȟ0(U ;O) = C. (4.11)

Let’s now consider the first cohomology, Ȟ1(U ;O). The first thing we note is that there is no cocycle
condition as we only have 2 open sets and so there is no triple intersection. This space therefore corresponds
simply to functions f01 on U01, modulo coboundaries, i.e. anything of the form ρ1g0 − ρ0g1.12

Thinking of U0 and U1 in terms of stereographic projection, we see that U01 is topologically an annulus
(it’s a sphere with the North and South poles removed). In other words, we have analytic functions defined
on an annulus, but these are exactly the criteria for f01 to have a well defined Laurent expansion,

f01(ξ) =

∞∑
n=1

bnξ
−n −

∞∑
n=0

anξ
n, with ξ :=

π0′

π1′
.

If we now define

g0(ξ) :=

∞∑
n=1

bnξ
−n and g1(ξ) :=

∞∑
n=0

anξ
n,

and note that gi is analytic on Ui, and so are 0-cocycles, we conclude that

f01 = ρ1g0 − ρ0g1 = δ0gi,

and so f01 is a coboundary. This let’s us conclude

Ȟ1(U ;O) = 0. (4.12)

Arbitrary Homogeneity

As we tried to make clear above, Equations (4.11) and (4.12) are valid for analytic functions of homogeneity
0. Of course this does not exhaust the kinds of functions we want to study. So the question becomes "what
if we consider sheaves of analytic functions of arbitrary homogeneity n?" We denote such sheaves by O(n).

First we consider the 0-th cohomology group Ȟ0(U ;O(n)). We immediately note that if n < 0 then we
are asking about global analytic functions with negative homogeneity, but these do not exist — a negative
homogeneity would require a singularity somewhere, but then the function couldn’t be analytic. So we
conclude

Ȟ0
(
U ;O(n)

)
= 0 ∀n < 0.

What about when n > 0? Well if we took n derivatives w.r.t. πA′ of such a function, g(πA′), we would obtain
a function with homogeneity 0. That is g(πA′) is a polynomial of degree n:

g(πA′) = ϕA
′
1...A

′
nπA′1 ...πA′n .

Putting this together with Equation (4.11), we conclude

Ȟ0
(
U ;O(n)

)
= Cn+1 ∀n ≥ 0.

Next we want to consider the 1st cohomology group Ȟ1
(
U ;O(n)

)
. This takes a little more work, and

is easiest seen by considering the specific case n = −1. The space Ȟ1
(
U ;O(−1)

)
is the space of analytic

functions f01 on U01 with homogeneity −1, modulo coboundaries. This is quite a complicated space. We
could proceed as above, i.e. considering the Laurent expansion, however we actually want to consider a
slightly more (initially) confusing approach. The reason for this will become clear next chapter.

We start by defining the 0-cochain [14]

hi(πA′) :=
1

2πi

∫
Γj

f01(λ, 1)dλ

λπ1′ − π0′
, with λ :=

λ0

λ1
, (4.13)
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Figure 4.2: A depiction of the contours Γ1,Γ2 used to define the 0-cochain Equa-
tion (4.13). Figure from [14].

where Γ0,Γ1 are two contours on CP1 on either side of the pole (λ0, λ1) = (π0′ , π1′), see Figure 4.2.
We note that hi is analytic on Ui (as the pole is not contained within the contour then) and so they really

are 0-cochains. Now, we pick up the pole when we consider

h0(πA′)− h1(πA′) =
1

2πi

∮
Γ

f01(λ, 1)

λπ1′ − π0′
dλ = f01(πA′),

which is defined exactly on the annulus U01, and so we have demonstrated that f01 is in fact a coboundary
and so

Ȟ1
(
U ;O(−1)

)
= 0.

From here we can actually quickly write down the result for all n > −1. As before, any f01(πA′) with
n > −1 can be written as a polynomial of degree n. We can then take (n + 1) πA′ derivatives to obtain a
function with homogeneity −1. We can then write this function as above, then finally multiplying by the πA′
polynomial again we obtain f01(πA′) as a coboundary. So in total we have

Ȟ1
(
U ;O(n)

)
= 0 ∀n ≥ −1.

Finally we just need to deal with Ȟ1
(
U ;O(n)

)
for n < −1. Here we use the Laurent expansion again.

We start by writing

f01(πA′) =
1

(π1′)n
f01(ξ, 1),

where again ξ := π0′/π1′ . The Laurent expansion is then

f01(πA′) =

[ −n∑
r=−∞

+

−1∑
r=−n+1

+

∞∑
r=0

]
arξ

r

(π1′)n

=

∞∑
r=n

a−r
(π1′)

r−n

(π0′)r
+

∞∑
r=0

ar
(π0′)

r

(π1′)n+r
+

n−1∑
r=1

a−r
(π0′)r(π1′)n−r

.

We note that the first two terms are well defined on U0 and U1, respectively, and so we see that collectively
they define a coboundary. However the third term is not a coboundary and so in total we conclude

f01(πA′) ∼ g01(πA′),

where

g01(πA′) :=

n−1∑
r=1

a−r
(π0′)r(π1′)n−r

.

12Here we are really dealing with addition, as the group operation on O is addition.
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That is, they are both representatives of the same equivalence class, [f ] = [g] ∈ Ȟ1(U ;O(n < −1)). Finally
we note that g01(πA′) is defined by (n− 1) complex numbers (the a−rs), and so

Ȟ1
(
U ;O(n)

)
= Cn−1 ∀n ≤ −2.

We summarise the above results in a table, as it will allow us to draw a very important conclusion.

n . . . −3 −2 −1 0 1 . . .

Ȟ0
(
U ;O(n)

)
. . . 0 0 0 C1 C2 . . .

Ȟ1
(
U ;O(n)

)
. . . C2 C1 0 0 0 . . .

This table highlights that we have a duality between Ȟ0(U ;O(n)) and Ȟ1(U ;O(−n − 2)). To see exactly
what the duality is, consider a 0-cochain

g(πA′) = ϕA
′
1...A

′
nπA′1 ...πA′n ∈ Ȟ

0
(
U ;O(n)

)
and a 1-cochain f(πA′) ∈ Ȟ1(U ;O(−n− 2)). Now consider the contour integral

(f, g) :=
1

2πi

∮
Γ

g(πA′)f(πA′)πB′dπ
B′ ,

where Γ is a path around the equator. This integral is complex linear, non-degenerate and depends only on
the equivalence class of f [14]. It therefore defines a duality between the two spaces.13 Next, we note that if
we rewrite our contour integral as

(f, g) = ψA′1...A′nϕ
A′1...A

′
n ,

with
ψA′1...A′n(πB′) =

1

2πi

∮
Γ

πA′1 ...πA′nf(πB′)πC′dπ
C′ , (4.14)

we see that ψA′1...A′n(πB′) is determined by f(πB′). Finally, we note that ψA′1...A′n ∈ Ȟ
0(U ;O(n))∗, where ∗

denotes the vector space dual, we conclude that our duality is in fact14

Ȟ1
(
U ;O(−n− 2)

)
= Ȟ0

(
U ;O(n)

)∗
.

We now claim that our cover U = {U0, U1} of CP1 is a Leray cover [14], and so, by Equation (4.10), we have
actually shown

Ȟ1
(
CP1;O(−n− 2)

)
= Ȟ0

(
CP1;O(n)

)∗
. (4.15)

This is an example of a so-called Serre duality. It is this result which will prove invaluable when it comes to
considering the solutions to the z.r.m. equations.

13In the same way that an inner product defines a duality between vector space and its dual.
14Note we have used the fact that our cohomologies have been given the structure of vector spaces, so that the vector space

dual makes sense.



5 | Solving The Zero Rest Mass Equa-
tions & The Penrose Transform

We are now in a good place to begin to solve the z.r.m equations, Equation (3.2). This will result in what is
known as the Penrose transform, which basically states that [4, 14]

Ȟ1
(
PT+;O(−n− 2)

) ∼= {positive frequency z.r.m. fields of helicity n}
Ȟ1
(
PT−;O(−n− 2)

) ∼= {negative frequency z.r.m. fields of helicity n}.
(5.1)

It is clear immediately that Čech cohomology, and the duality Equation (4.15), are going to play major roles
here. So without further ado, let’s get into it.

5.1 Integral Solutions

All the way back in Section 3.5.3 we looked at functions of twistor variables and presented the Kerr theorem,
which stated that analytic g.s.f congruences arise from the intersection of a 3-dimensional plane, given by
the zero set of f(Zα), with PN. We now want to do a similar thing, and demonstrate that the solutions to
the z.r.m. equations arise from a function on twistor space.

Consider two constant dual twistors Aα = (AA, A
A′) ∈ T∗ and Bα = (BA, B

A′) ∈ T∗. Then consider the
function

f(Zα) =
1

(AαZα)(BβZβ)
. (5.2)

We then impose the incidence relation, Equation (3.10), to restrict Zα to the line Lx, where x ∈ MC is the
point in complex Minkowski we which to define our z.r.m. around. That is we restrict

Zα = (ωA, πA′)→ (ixAA
′
πA′ , πA′).

We want to use Equation (5.2) to find a solution to the z.r.m. equations. We will consider the simplest
case where the field has vanishing homogeneity, and then look to generalise this to arbitrary solutions. The
first thing we note is that Equation (5.2) is not projectively well defined (as Aα and Bα are constant), and
so will cause problems on CP1. We therefore consider the integral

ϕ(x) =
1

2πi

∮
Γ

ρxf(Zα)πC′dπ
C′ =

1

2πi

∮
Γ

f(ixAA
′
πA′ , πA′)πC′dπ

C′ , (5.3)

where ρx is just the restriction to the line Lx, as indicated by the second equality. We will get a clearer
picture of what Γ is below (Figure 5.1). This integral has vanishing homogeneity, and the claim is then that
such a ϕ obeys the wave equation, �ϕ = 0. We see this by noting that

∂

∂xAA′
f(ixAA

′
πA′ , πA′) = iπA′

∂

∂ωA
f(ixAA

′
πA′ , πA′), (5.4)

50
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so that
∂2

∂xAA′∂xBB′
ϕ(x) =

1

2πi

∮
Γ

(−1)
∂2

∂ωA∂ωB
f(ixAA

′
πA′ , πA′)πA′πB′πC′dπ

C′ .

If we then contract AA′ with BB′, using πA′πA
′

= 0, we get the claimed result �ϕ = 0.
We can now generalise this result to a field with helicity ±|s| by recalling Equations (3.2) and (3.3),

which said that such a field would have 2s primed/unprimed spinor indices. Based on this index structure
argument, we can propose the following integral solutions

ϕA′1...A′2s(x) =
1

2πi

∮
Γ

πA′1 ...πA′2sρxf(Zα)πC′dπ
C′

ϕA1...A2s
(x) =

1

2πi

∮
Γ

ρx
∂

ωA1
...

∂

∂ωA2s
f(Zα)πC′dπ

C′ .

(5.5)

where homogeneity arguments (i.e. ϕ... must have vanishing homogeneity) tell us we require that the first
f(Zα) have weight −s − 2, while the second has s − 2. To show that these are indeed solutions we simply
use Equation (5.4).

This is great, but we have actually been a little careless. To see why we go back to Equation (5.2) and
note that restricting to Lx makes our contractions

AαZ
α = (iAAx

AA′ +A′)πA′ =: αA
′
πA′

BαZ
α = (iBAx

AA′ +B′)πA′ =: βA
′
πA′ ,

(5.6)

where we have defined αA
′
and βA

′
. Our integral, Equation (5.3), then becomes

ϕ(x) =
1

2πi

∮
Γ

1

(αA′πA′)(βB
′πB′)

πC′dπ
C′ . (5.7)

We now note that this is only well defined if the two poles are distinct, i.e. if αA
′ 6= βA

′
along Lx. Since αA

′

and βA
′
are distinct, we can use the lowered index versions as a coordinate basis for πA′ :

πA′ = αA′ + zβA′ .

Substituting this into the integral above, using αA
′
αA′ = βA

′
βA′ = 0 and the fact that they are constants

(so we only get dz), we have

ϕ(x) =
1

2πi

∮
Γ

1

(αA′βA′)z
dz =

1

αA′βA′
.

Now comes the important observation: if our two dual twistors meet in some other line, Ly, then there
we must have αA

′
βA′ = 0. Putting this together with the definitions in Equation (5.6), we conclude that

αA
′
βA′ =

1

2
AAB

A(x− y)2 =⇒ ϕ(x) =
2

AABA(x− y)2
,

where y is considered as some fixed point. We can verify that this is indeed a solution to the wave equation,
however we have the immediate problem that all the x that are null separated from y give a singular behaviour
for our field! If ϕ(x) is going to be our field, then, we must restrict the domain. This restriction allows us to
give a geometrical picture of positive/negative frequency fields [14]:

(i) If we take Ly to lie entirely in PT−, then we can take the domain to be all of PT+, i.e. any
Lx ⊂ PT+ gives a non-singular ϕ(x). This domain in MC corresponds to all time-like future
pointing vectors, so the domain is M+

C , known as the future tube.

(ii) Similarly if we take Ly to lie entirely in PT+ then we get Lx ⊂ PT− and the past tube M−C .
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These ideas clearly carry over to the higher helicity fields, and with a bit of faith we can begin to see where
Equation (5.1) comes from: Equation (5.5) tells us that we want homogeneous functions of degree −n − 2,
while the conditions above tell us that the domains give us positive and negative frequency fields. This idea is
strengthened when we compare Equations (4.14) and (5.5): the solutions to our z.r.m. equations form a Serre
duality, and we should think of our twistor functions as elements of the cohomology class Ȟ1(U ;O(−n− 2))
where U is an open cover of PT+.

Before moving on to show this isomorphism in more detail we want to point out an important property
of our functions f(Zα). We recall that (in the case of vanishing helicity field, the extension should be clear)
we required our two poles to be distinct. This was just the statement that, for a positive frequency field, the
β-planes defined by the dual twistors Aα and Bα do not intersect in PT+. The intersection of Lx with these
two planes then gives the two poles on our Riemann sphere and the contour runs between these two poles,
see Figure 5.1. This contour corresponds to a plane in PT lying between the two β-planes, and moving the
contour towards the poles corresponds to moving this plane towards the corresponding β-plane.

Figure 5.1: A positive frequency field with vanishing helicity, ϕ(x), is defined by the
integral Equation (5.7), where the β-planes corresponding to the dual twistors Aα and Bα
meet at Ly ⊂ PT− and do not intersect in PT+. The intersection of Lx ⊂ PT+ with these
β-planes gives two distinct poles on the Riemann sphere. The contour, Γ, for our integral
then corresponds to a ‘moveable’ plane lying between the two β-planes; when this plane
overlaps with a β-plane, the corresponding pole is picked up. Figure from [14].

As the two poles lie on different sides of Γ, it is clear that if we add to f(Zα) a function, h(Zα), which
is holomorphic on one side of this contour (even if it is singular on the other side), we still get the same field
ϕ(x) as we can simply contract Γ to the holomorphic side. As our integrals are linear, we can actually add
two such functions, which are singular on opposite sides of Γ. In this way we have the total freedom

f 7→ f + h− ĥ,

where h, ĥ are holomorphic on opposite sides of Γ. In terms of cohomology, this shift can be encoded in
changing the representative [f ] ∈ Ȟ1(U ;O(−2)) by a coboundary, i.e. h, ĥ ∈ B1(U ;O(−2)) [14].

5.2 Proving The Penrose Transform

The above arguments were simply suggestions that the Penrose transform holds, however they do not con-
stitute a rigorous proof in themselves. The aim of this section is to provide a more satisfying proof. In
particular, we want to show it holds for the cases of non-vanishing helicity.

First we note what the Penrose transform is actually doing. In order to do this we need to recall our
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double fibration picture, Equation (3.14), which we depict again now with more standard notation:

F

PT MC

νµ

F is a primed spinor bundle and the maps are given as before, i.e.

µ : (xAA
′
, πA′) 7→ (ixAB

′
πB′ , πA′), and ν : (xAA

′
, πA′) 7→ xAA

′
.

Now, clearly the left-hand side of the Penrose transform, Ȟ1(PT±;O(−n− 2)), is a cohomology class on
PT. However, the right-hand side are sections of the sheaf of analytic massless free-fields of helicity n on M±C .
These two objects live on different spaces, and so it is really not a trivial task to compare the two. This is
exactly where the double fibration comes in: we can use F as an intermediate stepping stone to translate
information from PT to information on MC. That is we can try use the mappings

ν ◦ µ−1 : PT→ MC and µ ◦ ν−1 : MC → PT

to translate data between the two spaces. This is exactly how we shall prove the Penrose theorem, however
we will naturally hide a lot of the technical steps, as these would take up too much space to show completely.
A much more complete proof1 can be found in section 7.2 of [4]. Here we will follow the more condensed
proof given in [14], however we first make an important comment.

Our starting point is a Čech cohomology class on an open subset U ⊂ PT. We argued above that we
wanted to consider specifically the cases of PT±, and although those arguments were rather clear, we can
now give further support for these choices. As we touched upon in Section 4.3.1, the natural way to lift a
cohomology structure from one space to another is via a pullback. Consider the open subspaces U ⊂ PT and
U ′ ⊂ F, related via U = µ(U ′). Then we want to consider the particular case of

µ∗ : Ȟ1(U ;O)→ Ȟ1(U ′;µ−1O),

where µ−1O is a pullback2 of the sheaves to U ′, which is a well-defined structure (see section 7.1 of [4]).
Now as the Penrose transform is an isomorphism, we naturally ask the question "when is such a pullback
an isomorphism?" The answer turns out to be topological, namely we require µ : U ′ → U to be so-called
elementary. Similar topological restrictions apply when we then try and push this data down from F to
MC. It turns out that taking U = PT± will satisfy these topological restrictions [4], and so we the Penrose
transform seems at least plausible.

5.2.1 Positive Helicity

We start by considering the simpler cases of positive helicity. We define, [14], Z ′n(m) to be the sheaf of germs
of symmetric n-index primed spinor fields, ϕA′...B′(x, π), holomorphic on F+, homogeneous with degree m in
πA′ , which are also z.r.m. fields, i.e.

∇AA
′
ϕA′...B′ = 0.

Now the idea to proving the Penrose transform will be to construct a short exact sequence of these sheaves,
and then ‘pluck it out’ of the corresponding long exact sequence in cohomology. We therefore need to make
the above into a complex, which we do by considering the surjective mapping [14]

πA
′

: Z ′n+1(m− 1)→ Z ′n(m)

ϕA′B′...C′ 7→ πA
′
ϕA′B′...C′ .

1This also uses the language of resolutions, details of which can be found in the reference, of course.
2To those familiar with pullbacks, the idea of denoting a pullback with an inverse symbol, rather then the standard superscript

∗, seems strange. This is done here to avoid confusion with the map µ∗ we are trying to define, and the specific µ−1O notation
is used to match [4].
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As this map is surjective, if we consider its kernel we can obtain a short exact sequence. That is we define

T := {ψA′...B′ ∈ Z ′n+1(m− 1) |πA
′
ψA′...B′ = 0},

then we get a short exact sequence

0 T Z ′n+1(m− 1) Z ′n(m) 0,ι πA
′

where ι is an inclusion mapping. We can actually construct T explicitly: recall that symmetric spinors can be
factorised into their principal null directions, Equation (2.19). Well, by definition ψA′...B′ ∈ T must satisfy

πA
′
ψA′...B′ = 0 =⇒ ψA′...B′ ∝ πA′ .

If we then impose the symmetry condition we see that the p.n.d.s of ψA′...B′ are simply the πA
′
s, i.e.

ψA′...B′ = πA′ ...πB′f(x, π),

where f(x, π) is the proportionality function.
Next it follows from the definition of the mapping that ψA′...B′ must be homogeneous of degree m− 2 in

πA′ , and so we conclude that f(x, π) must be homogeneous of degree m − n − 2, to account for the n πA′

factors in ψA′...B′ . We define T (m− n− 2) to be the set of such f(x, π)s. We can then define an injection

ι′ : T (m− n− 2)→ Z ′n+1(m− 1)

f(x, π) 7→ πA′ ...πB′f(x, π),

and our short exact sequence becomes

0 T (m− n− 2) Z ′n+1(m− 1) Z ′n(m) 0.ι′ πA
′

Let’s consider the specific case of m = 0, then the corresponding long exact sequence in cohomology
contains the piece

· · · → Ȟ0
(
F+;Z ′n+1(−1)

)
→ Ȟ0

(
F+;Z ′n(0)

)
→ Ȟ1

(
F+; T (−n− 2)

)
→ Ȟ1

(
F+;Z ′n+1(−1)

)
→ . . .

Recalling that the zeroth Čech cohomology just corresponds to global sections, we see that the first term
must vanish as, for a fixed xAA

′
, it would correspond to global sections on CP1 with homogeneity −1, which

we already showed must vanish. Equally it follows from the fact that our map µ : F→ PT is elementary that
the final term vanishes (see Lemma 7.2.1 of [4]). Exactness then leaves us to conclude that

Ȟ0
(
F+;Z ′n(0)

) ∼= Ȟ1
(
F+; T (−n− 2)

)
.

Now the left-hand side is the cohomology of solutions to the z.r.m. field equations on F+ with vanishing
homogeneity in πA′ . The fact that it is defined on F+ tells us that the fields have positive frequency, i.e. the
spacetime points are M+

C . So these are exactly the right-hand side of our Penrose transform Equation (5.1).
Finally the term on the right-hand side is a cohomology class of twistor functions on F+. However, as

they are twistor functions, we can simply push them down to PT+ without changing anything. That is the
fact that ψA′...B′ satisfies the z.r.m. equations tells us that

πA
′
∇AA′f(x, π) = 0,

and so it is constant on the α-planes and so can freely be pushed down onto PT+. The sheaves are then
analytic functions of degree (−n− 2), and so we have

Ȟ1
(
F+; T (−n− 2)

) ∼= Ȟ1
(
PT+;O(−n− 2)

)
,

which if we put together with the above gives us exactly the Penrose transform. A similar argument can be
made for PT− and M−C ,3 and so we can summarise the positive helicity case as [4]

3Indeed you can show the isomorphism holds for a general open subspace, subject to the topological descriptions mentioned
above. See Theorem 7.2.3 of [4] for the general statement.
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Ȟ1
(
PT±;O(−n− 2)

) ∼= Γ(M±C ;Z ′n) ∀n ≥ 1.

The explicit inverse coboundary operator δ−1
0 : Ȟ1

(
PT+;O(−n − 2)

)
→ Γ(M+

C ;Z ′n) is constructed on pages
93-94 of [14], and the interested reader is directed there.

5.2.2 Negative Helicity

We have demonstrated the positive helicity case (n ≥ 1), so we now turn our attention to the negative helicity
cases. That is we want to show that

Ȟ1
(
PT±;O(n− 2)

) ∼= Γ(M±C ;Z ′−n) ∀n ≥ 1.

Unfortunately this is significantly more involved, and a complete treatment (as in [4]) involves introducing
structures like Stein manifolds. As before, we will gloss over these details and follow the proof given in [14].
However, even with this more ‘streamlined’ proof, we still need to introduce potentials.

Again the idea is to use a short exact sequence of sheaves and then pluck the result from a long exact
sequence in cohomology. This time we consider the short exact sequence of sheaves on F+

0 T (n) K(n) QA(n+ 1) 0,
DA

where

• K(n) is the sheaf of holomorphic functions with homogeneous degree n in πA′ .

• DA is the operator, DA := πA
′∇AA′ .

• T (n) is the kernel of DA, so again represents twistor functions of homogeneity n.

• QA(n + 1) is the sheaf of spinor-valued functions, ψA(x, π), of homogeneity (n + 1) in πA′ , satisfying
DAψA = 0.

It is clear that T (n) can be mapped injectively to K(n), and the claim is that DA : K(n) → QA(n + 1) is
surjective [14], and so the above sequence is indeed exact.

We now look at the piece of the corresponding long exact sequence

0→ Ȟ0
(
F+; T (n)

)
→ Ȟ0

(
F+;K(n)

)
→ Ȟ0

(
F+;QA(n+ 1)

)
→ Ȟ1

(
F+; T (n)

)
→ Ȟ1

(
F+;K(n)

)
→ . . .

We shall describe what each of these cohomology classes are in just a moment, however first we note that,
for exactly the same reasons as above, we can push Ȟ0/1(F+; T (n)) down to PT+ and obtain Ȟ0/1(PT+;O(n)).
We then also claim that, again by Lemma 7.2.1 of [4], that Ȟ1(F+;K(n)) = 0. So what are cohomology
groups? Well Ȟ1(F+; T (n)) ∼= Ȟ1(PT+;O(n)) is the space we want, and the other three are:

• Ȟ0(F+; T (n)) ∼= Ȟ0(PT+;O(n)): This is the space of global twistor functions of homogeneity n. These
are order n polynomials µ = πA

′
...πB

′
µA′...B′ lying in the kernel of DA, which implies

πC
′
∇CC′µ = πA

′
...πB

′
πC
′
∇C(C′µA′...B′) = 0.

We shall denote this space as Tn in what follows.

• Ȟ0(F+;K(n)): these are the same weight n polynomials as above, however they need not lie in the
kernel of DA. We shall denote this space Λn in what follows.

• Ȟ0(F+;QA(n+1)): This is the space of spinor fields with (n+1) primed indices, ψA = ψAA′...C′π
A′ ...πC

′
,

which lie in the kernel of DA, i.e.

DAψA = πA
′
...πC

′
πD
′
∇(D′

AψA′...C′)A = 0.

We shall denote this space by Ψn.
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So our long exact sequence becomes

0 Tn Λn Ψn Ȟ1
(
PT+;O(n)

)
0,ι σ δ0 (5.8)

where ι is again an inclusion mapping, σ : λA′...B′ 7→ ∇A(A′λB′...C′), and δ0 is the coboundary operator, as
per Equation (4.4). Again the explicit construction of this mapping can be found on pages 96-98 of [14].

This looks nice, however it doesn’t seem quite as nice as the positive helicity case where we could easily
extract the isomorphism from the long exact sequence itself. So what do we do here? The answer is we need
to introduce potentials modulo gauge transformations [14].

Consider a field ψA ∈ Ψn, i.e. a field ψAA′...C′ such that ∇A(D′ψAA′...C′)A = 0. Then define a new field

ϕAB...D := ∇B
′

(B ...∇D
′

DψA)B′...D′ . (5.9)

This field has (n+ 2) unprimmed spinor indices and it follows from the conditions above that it is a solution
of the z.r.m. equations, i.e. ∇A′AϕAB...D = 0. This field therefore corresponds to a helicity − 1

2 (n+ 2) z.r.m.
field, as per Equation (3.2). We shall denote the space of such fields by Φn+2.

This is the space we want to be isomorphic to Ȟ1(PT+;O(n)), and so we somehow want to show that we
have the same long exact sequence as Equation (5.8) but with Ȟ1(PT+;O(n)) replaced with Φn+2. How do
we do that? Well we note that the transformation

ψAA′...C′ → ψAA′...C′ +∇A(A′λB′...C′)

will still lie in the kernel of DA. It is therefore a gauge transformation on the space Ψn. We then note that
if λB′...C′ ∈ Tn then it lies in the kernel of DA and so leaves ψAA′...C′ itself unchanged. This then gives us
an exact sequence

0 Tn Λn Ψn Φn+2 0,ι σ ν

where ν : ψAB′...D′ 7→ ϕAB...D via Equation (5.9), which we claim is indeed surjective (as needed for exact-
ness). Finally we simply compare our two exact sequences and conclude (making the argument that a similar
calculation holds for PT− etc)

Ȟ1
(
PT±;O(n− 2)

) ∼= Φn = Γ(M±C ;Z ′−n) ∀n ≥ 1,

which was the desired result.

Example: Maxwell’s Fields

This construction might seem a bit abstract, but we can see that it is actually rather straight forward by
considering the example of a Maxwell field. Recall that this corresponds to a 2 index unprimmed z.r.m. field,
Equation (3.1), which we now denote ϕAB . The potential field is an element of Ψ0, i.e. ψAA′ such that
∇A(A′ψB′)A = 0. Now T0 is simply C, i.e. it is the set of constant functions, and so the gauge transformation
is simply

ψAA′ → ψAA′ +∇AA′Λ,

where Λ ∈ C, and where the notation is used to make comparison to standard QFT literature straight
forward.
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We present a reasonably detailed introductory review of twistor theory, discussing the main concepts and
presenting some of the significant results and their relations to physics.

We show how twistor theory can build on the already well understood double covering map, which relates
spinors and vectors. Just as this map allows us to view spinors as more ‘primitive’ than vectors, twistor
theory allows us to view twistor space as more elementary than the points in spacetime themselves. This
relation is captured in the incidence relation, Equation (3.10), and, by studying its geometrical properties,
we show that:

(i) A point x ∈ MC in complexified Minkowski spacetime corresponds to a line Lx ∈ PT in projective
twistor space. See Section 3.3.1.

(ii) The intersection of two lines Lx, Ly ∈ PT, which represents a point in PT, corresponds to the associated
points x, y ∈ MC being null separated. See Section 3.3.2.

Relation (ii) allows us to introduce α-planes and β-planes, which are totally null 2-planes in MC who’s
tangent bivectors are self-dual and anti-self-dual, respectively. This gives us a nice pictorial description of
the twistor correspondence, Figure 3.1. From here we show that if an α-plane contains a real point, and
so corresponds to the real Lorentzian Minkowski spacetime, M, that the corresponding twistor is null. The
reverse is also true: a null twistor gives a point in M. In this way we show that the space of null twistors,
PN, corresponds to the Lorentzian signature hypersurface of MC.

We show in Section 3.4.2 that twistor space is conformally invariant, and so can only encode the conformal
class of the spacetime itself. We remedy this by introducing the infinity twistor, and we go through the explicit
example for Minkowski spacetime.

By considering geodesic congruences and introducing the notion of complex shear, we present the Kerr
theorem, which states that all geodesic shear free congruences arise from the intersection of the zero set of
a twistor function with a hypersurface in projective twistor space. We give the important example of the
Robinson congruence, which is where twistor theory gets its name.

The Kerr theorem forms the basis for our attempt to solve the zero-rest-mass field equations in terms of
twistor functions. We solve this problem by first introducing the ideas of sheaf cohomology in Chapter 4,
and then present the Penrose transform in the proceeding chapter. This tell us that there is an isomorphism
between the solutions of the z.r.m. field equations with helicity n and the first Čech cohomology group
Ȟ1(PT±;O(−n − 2)), Equation (5.1). This is a very significant result, as the former is obviously very
physical, while the later is an incredibly precise mathematical construction.

This project by no means exhausts the vast shadow cast by the umbrella of twistor theory’s ideas. Indeed
what we have actually presented is the linear Penrose transform. There is a non-linear extension to this
known as the (Penrose-)Ward transform. This was first presented in 1976 in Penrose’s paper [23], which
discusses how to produce single gravitons from a curved twistor space. The curvature is actually split into
right-/left-handed, which can be related to whether the spacetime is self-dual or anti-self dual. A so-called
right-flat (so left-curved) space gives anti-self dual solutions, and this paper shows how such a construction
gives rise to a general left-handed graviton state. The Ward transform allows us to study gauge theory in more
detail, and the transform relates anti-self-dual Yang-Mills (ASDYM) solutions to holomorphic vector bundles
on projective twistor space [24]. This correspondence allows one to then study instantons, i.e. ASDYM
solutions with finite action, i.e. ∫

Tr(F ∧ ?F ) <∞.

57
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As we said the Ward transform only encodes information about anti -self-dual solutions. Indeed it is one
of the infamous problems in twistor theory known as the Googly Problem,1 which states that we don’t know
how to encode self-dual solutions in the geometry of PT.

A discussion of these topics, as well as a plethora of others, can be found in the Twistor Newsletters [25,
26].

These Newsletters cover information up to the turn the millenia, and so do not contain information about
Witten’s work [3] mentioned in the introduction. This is an extension of the Parke-Taylor formula, which
uses the fact that a null vector corresponds to an outer product of two spinors with opposite chirality (see
Equation (2.7)) to compute tree level gluon amplitudes [27]. This construction was first related to twistor
theory in 1988 by Nair’s extension in [28], which included N = 4 supersymmetry and expressed it as an
integral in twistor space. Witten’s idea was to then extend this by considering a string theory with target
space given by super-twistor space. This formalism gave a formulation for N = 4 super-Yang-Mills theory.

1This problem gets its name from the bowling technique in cricket... who would have thought!
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