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0 | Introduction

These notes are meant to build on the Complex Manifold notes previously written. The
main purpose of those notes was to introduce Calabi-Yau manifolds and present a method of
obtaining them as hypersurfaces in complex projective spaces. Although this construction was
quite adaptable, i.e. we can consider direct sums of CPns etc, however it was a reasonable
amount of work to do calculations this way. In particular, we showed at the end of those
notes that the hyperplane class of weighted complex projective spaces was fractional. We
mentioned that this corresponded to orbifold singularities, but didn’t comment more on how
to do with these. The content of those notes is based around the mathematical area of
differential geometry.

The idea of these notes is to introduce a new mathematical tool that makes questions of "is
the hyperplane class fractional?" and "how do we deal with orbifold singularities?" essentially
trivial combinatorics games. This mathematical tool is algebraic geometry, and in particular
toric geometry.

The content is laid out as follows:

• Chapter 1 briefly introduces the main preliminary mathematics that it’s reasonable to
not already be familiar with.

• Chapter 2 then introduces a key structure, divisors. These are basically formal objects
that encode hypersurfaces in some ambient space. As we will see, when we talked about
hyperplane bundles in the Complex Manifolds notes, what we were really talking about
was a line bundle associated to a divisor, hence the name hyperplane bundle.

• Chapter 3 forms the main content. It is here we really discuss toric geometry, obviously
introducing all the relevant definitions. We give the procedure of how to construct a
toric variety from a fan using the ‘homogeneous coordinate’ approach. We then go on to
demonstrate the real immense power of this construction by the fact that such a simple
combinatorics game contains so much information about the resulting space. We, of
course, discuss how to construct Calabi-Yau manifolds in these spaces. We introduce
some examples that we keep returning to in order to help keep the material grounded.

• Chapter 4 is a short introduction and discussion of so-called elliptic fibrations. This
chapter really demonstrates how useful the toric techniques are to constructing highly
non-trivial spaces.

• Chapter 5 is then a quick summary of the material.

1
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1 | Preliminaries

We want to build on the work done in the Complex Manifold notes, by discussing toric
geometry as a method of resolving the orbifold singularities present in weighted projective
spaces. Indeed, we will see that toric geometry actually gives us a really neat way to produce
Calabi-Yau manifolds with all kinds of desired properties. In order to do all this, however,
we first need some preliminaries, which this chapter shall cover. We will only introduce the
bare minimum, and present a lot of this as a list of definitions that we can refer back to when
needed.

1.1 Orbifolds

Firstly let’s just clarify what an orbifold is. To any readers who read the end of the complex
manifold notes, we have already seen that an orbifold is some sort of singular manifold, given
by modding out by some finite group. It turns out that mathematicians and (string) physicists
have slightly different definitions of an orbifold. To a mathematician the requirement is that
this quotienting happens locally, whereas the physicists instead quotient the complete manifold
globally. More explicitly:

Definition. [Orbifold (Mathematician)] A (Hausdorff) topological space X is called an
orbifold if, for each Ui in the covering open sets {Ui} we have an open subset Vi ⊂ Rn and
finite group Γi such that

(i) Vi is invariant under faithful, linear action of Γi,

(ii) there exists a homeomorphism ϕi : Vi/Γi → Ui, known as the orbifold chart.

Basically all this definition is saying is that the neighbourhoods of p ∈ Ui are given by Rn/Γi,
rather than simply Rn as for the manifold case.

Definition. [Orbifold (String Theorist)] Let M be a manifold and let G be a group of
(some of) the isometrics ofM. Then the orbit spaceM/G is called an orbifold.

In contrast to the mathematician’s definition, we note quotient the whole manifold so that our
orbifold is really a global notion. In either case, we get singularties arising in our orbifolds,
given by the fixed points of the group action.

2



CHAPTER 1. PRELIMINARIES 3

1.2 Sheaves

The language of sheaves will be used throughout these notes. I may come back later and add
a section on sheaves, for completeness, but for time reasons now I simply refer any unfamiliar
readers to Chapter 4 of my summer project on Twistor Theory

1.3 Algebraic Varieties

The above definition of an orbifold was given in terms of differential geometric language,
i.e. in terms of manifolds. There is a closely related notion in algebraic geometry1 called a
subvariety, which we now outline how to define. To do this, we first introduce/recall a bunch
of definitions (without further comment to save space).

Definition. [Algebraically Closed Field] Let K be a field, and denote the ring of polyno-
mials in n-variables by K[x1, ..., xn], i.e. f ∈ K[x1, ..., xn] means f(x1, ..., xn) ∈ K. Then
we call K algebraically closed if any non-constant polynomial over K has a root in K, i.e.
f(x1, ..., xn) = 0 has x1, ..., xn ∈ K.

Example 1.3.1 . The ring of real numbers is not algebraically closed as f(x) = x2 + 1 has root
x = ±i /∈ R. However the ring of complex numbers is algebraically closed. In what follows we
shall assume we are using the complex numbers everywhere.

Definition. [(Complex) Algebraic Variety] Consider the space Cn,2 and consider the
algebraically closed field C. Labelling the coordiantes of Cn by {z1, ..., zn}, we have
f ∈ C[z1, ..., zn] being a C valued function over Cn. Now consider some set of polyno-
mials S ⊂ C[z1, ..., zn] and define for their common zero locus

Z(S) := {z ∈ Cn | f(z) = 0 ∀ f ∈ S}.

Then a subspace X ∈ Cn is called a (complex) algebraic set if X = Z(S) for some S. If we
can write U as the union of two proper algebraic sets then we say that U is reducible. If
it is not reducible (and non-empty) it is irreducible. Finally, an irreducible algebraic set is
called a algebraic variety. We can turn X into an topological space by defining our closed
sets3 to be the algebraic sets. This is known as the Zariski topology. A subspace of X that
is also an algebraic variety is called an algebraic subvariety.

Terminology. From now one we shall simply say "variety" to mean "complex algebraic vari-
ety".

Now note that the dimension of the space X is related to the cardinality of the set
S ⊂ C[z1, ..., zn]. This is simply the statement that each zero condition allows us to relate

1For those perhaps unfamiliar: as the name suggests differential geometry studies the geometry of differen-
tials (i.e. vectors and tensors), whereas algebraic geometry is basically the study of the geometry associated
to the solutions of polynomial equations. The two fields are obviously closely related and we often tread the
line between the two. The algebraic equivalent to a manifold is called a variety.

2We define algebraic varieties more generally in terms of affine spaces, which Cn is an example of.
3For clarity, it is possible to define a topology in terms of closed sets, we simply reverse the conditions on

unions and intersections.
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CHAPTER 1. PRELIMINARIES 4

one of the zi to some of the others, and so reduces the dimension by one. We therefore see
that a codimesion 1 subvariety is simply a hypersurface in X given by the zero locus of some
polynomial. We saw ideas of this in the complex geometry notes when constructing Calabi-
Yau manifolds as hypersurfaces of CPn. Indeed it turns out that for complex manifolds all
hypersurfaces arise in this way, which we say again the following definition.

Definition. [Hypersurface] Given a complex space X, a hypersurface, Y , is a (sub)variety
of codimension 1, i.e. Y ⊂ X and dimY = dimX − 1. A hypersurface is said to be
irreducible if it corresponds to an irreducible (sub)variety.

A general hypersurface is given by the union of its irreducible components, i.e. Y = ∪Yi
where Yi are the irreducible hypersurfaces. If X is compact then any hypersurface has only
finitely many irreducible components.



2 | Divisors

We are now in a position to start discussing divisors. We start with the definition of a Weil
divisor.

2.1 Weil Divisors

Definition. [(Weil) Divisor] A (Weil) divisor, D, on X is a formal linear combina-
tion of irreduicible hypersurfaces, i.e.

D =
∑
i

ai[Yi], where ai ∈ Z. (2.1)

The coefficients ai give the order to which the defining polynomial vanishes, with
negative values corresponding to poles. It is hopefully clear that we can turn this
into a group in the natural way (i.e. by our addition), in this way we define the
divisor group of X, Div(X).

We should clarify a bit the formal addition defined for Equation (2.1). This is simply de-
fined in terms of the weightings of the defining polynomials and does not somehow correspond
to "adding" two hypersurfaces together to get a new hypersurface. We can constrast this to
the addition in homology, by recalling that hypersurfaces can be thought of in terms of homol-
ogy (i.e. we can triangulate the hypersurface using simplicies). Homology has a well defined
addition given in the expected way, namely [Y1]homol + [Y2]homol = [Y1 + Y2]homol. Now, let’s
imagine that Y1 and Y2 are two different hypersurfaces, but suppose that the corresponding
elements in homology are in the same class, i.e. [Y1]homol = [Y2]homol. If we then consider
their difference then we get a vanishing result in homology, but the divisor D = a1[Y1]−a2[Y2]
is non-vanishing. In this sense a divisor is a finer notion than a homology class. In this way
we see that the square bracket notation in Equation (2.1) does not mean the corresponding
homology class, however it is standard notation and so we keep it.

Definition. [Support Of A Divisor] Let D ∈ Div(X) be a divisor, then the support of D
is the subset of X given by

sup

(∑
i

ai[Yi]

)
=
⋃
ai 6=0

Yi.

5



CHAPTER 2. DIVISORS 6

Definition. [Effective Divisor] A divisor D ∈ Div(X) is called effective is all ai ≥ 0.

If a divisor is effective, we write D ≥ 0. More generally, given D,D′ ∈ Div(X) we write
D ≥ D′ if the difference D −D′ is effective.

Remark 2.1.1 . Note given any hypersurface Y = ∪iYi, we can define an effective divisor by
D =

∑
[Yi].

As the definition makes clear, a divisor is defined for any polynomial defined on our
space, however not all polynomials correspond to functions on a space. That is, they don’t
correspond to sections of the constant sheaf OX := C. As an example, if our ambient space
(i.e. the space we start with) is CPn, we can define a hypersurface, and therefore a divisor,
by z0 = 0, however this equation is not projectively well defined. We now want to describe
divisors that arise from functions on our space.

Remark 2.1.2 . To those that have read Proposition 3.2.3 of my complex manifolds notes (or
to anyone who has seen the same result elsewhere), might want to say "but we’ve seen that
polynomials do correspond to holomorphic sections!" The point is that what this proposition
says is that a polynomial of degree d in CPn is given by a holomorphic section of OCPn(d),
i.e. the tensor product of d copies of the hyperplane line bundle. What we’re saying above is
that this is not a holomorphic function on CPn, i.e. it is not a section of constant sheaf C. In
fact we will actually derive the hyperplane line bundle result shortly.

2.1.1 Principal Divisors

Recall that a holomorphic function on U ⊆ X is simply a (0, 0)-form, i.e. a holormorphic
section in Γ(Λ0,0, U). Perhaps more simply, a holomorphic function on some open set U is
just a function who’s charted image is holomorphic in CdimX .

Definition. [Meromorphic Function] Let U ⊂ Cn be open, then a mermorphic function
f on U is a function defined on the complement of a nowhere dense subset S ⊂ U with
the following property: there exists an open cover U = ∪iUi and holormphic functions
gi, hi : Ui → C such that

hi|Ui\S · f |Ui\S = gi|Ui\S .

We denote the set of all meromorphic functions on U byK(U) and the sheaf of meromorphic
functions by K(U).

Perhaps more intuitively, a meromorphic function is a holomorphic function that can be
singular. Indeed for any point z ∈ U we can write f = g/h where g, h are holomorphic
functions in U . In this way we can define the order of a meromorphic function as the order
(i.e. "powers of z") of the quotient g/h. More preciely we have the following definitions. Here
Z(g) := {z ∈ U |g(z) = 0}.

Definition. [Zero Set & Pole Set] Let f ∈ Z(U) be given by f = g/h. Then the zero set
Z(f) ⊂ U is defined by Z(g) while the pole set P (f) is defined by Z(h).
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Definition. [Order Of Meromorphic Function] Let f ∈ Z(U) be given by f = g/h. Then
we define the order of f on U by ordU (f) = ordU (g) − ordU (h).1 We say that the mero-
morphic function has zeros/poles of order ±ordU (f) (where ordU (f) ≥ 0).

If we now consider the specific cases when we are looking at a hypersurface in X, we can
define ordY : K(X)→ Z, and so define a divisor as follows.

Definition. [Principal Divisor] Let f ∈ K(X). then the divisor associated to f is

(f) :=
∑

ordY (f)[Y ], (2.2)

where the sum is done over all irreducible hypersurfaces of X. We call a divisor of
this form principal. We denote the group of principal divisors Div0(X).

All we have said is that a principal divisor is simply the Weil divisor associated to a memro-
morphic function.

Now, note that a principal divisor (f) is not necessarily effective, but we can split it into
the difference of two effective divisors, namely (f) = Z(f)− P (f)

Z(f) =
∑

ordY (f)>0

ordY (f)[Y ] and P (f) =
∑

ordY (f)<0

−ordY (f)[Y ]

known as the zero divisor and pole divisor, respectively. Next note that it follows from

ordY (f1 · f2) = ordY (f1) + ordY (f2)

for f1, f2 ∈ K(X), that (f1 · f2) = (f1) + (f2). Putting this together with the fact that clearly
the zero divisor D = 0 is the principal divisor associated to a constant function, we see that
principal divisors form a subgroup of Div(X). We often denote this subgroup by Div0(X).

Definition. [Linearly Equivalent Divisor] Let D,D′ ∈ Div(X). We call them linearly
equivalent, denoted D ∼ D′, if D −D′ is a principal divisor.

Remark 2.1.3 . Note that the name/notation is not a poor choice, indeed linear equivalence on
divisors is an equivalence relation, i.e. clearly: D ∼ D; D ∼ D′ ⇐⇒ D′ ∼ D; and D ∼ D′,
and D′ ∼ D′′ implies D ∼ D′′.

Definition. [Weil Divisor Class Group] We call the quotient of the Weil divisors by prin-
cipal divisors the Weil divisor class group:

Cl(X) :=
Div(X)

Div0(X)
.

That is, an element in Cl(X) is given by a class of linearly equivalent divisors.
1Here the order of a holomorphic function can be thought of as the highest power in the series expansion.
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2.2 Cartier Divisors

Now note that our construction of a principal divisor is a global one, namely we require that
our meromorphic functions be global. We now want to try generalise this to the case when
our meromorphic functions are only locally given. That is, we want to consider the case when
we aren’t given a global section in OX , but instead we only have collection of local sections in
OX(Ui) where ∪Ui = X. The idea is to take these local sections and "patch them together"
to get a global one, thereby producing our global divisor. Well what we have just described is
exactly the content of the zeroth Čech cohomology group, which motives the next proposition.

Proposition 2.2.1. The following isomorphism exits

H0(X,K∗X/O∗X) ∼= Div(X), (2.3)

we call the left-hand side the space of Cartier divisors.

Proof. First we note that the space of non-trivial holomorphic functions are indeed a subset
of the non-trivial meromorphic functions, i.e. (in terms of sheaves) O∗X ⊂ K∗X . This follows
simply because we can think of a non-trivial holomorphic function as an invertible meromor-
phic function, and so the quotient K∗X/O∗X on the left-hand side is well defined. For the rest
of this proof we shall drop "non-trivial".

Now consider some element f ∈ H0(X,K∗X/O∗X). This is given by a collection of mero-
morphic functions fi ∈ K∗X(Ui) modulo multiplication by a holomorphic function on Ui, where
{Ui} is an open cover of X. By definition of Čech cohomology, fi and fj must agree on the
overlap Ui∩Uj , up to multiplication of an element in O∗X(Ui∩Uj), i.e. fi ·f−1

j is a holomorphic
function. This is a transition function and so, by definition, must be non-vanishing on the
overlap. The fact that fi · f−1

j has no zeros means that ordY (fi · f−1
j ) = 0 where Y is an irre-

ducible hypersurface with Y ∩Ui ∩Uj 6= 0. However this tells us that ordY (fi)− ord(fj) = 0,
which in turn tells us that the order of f itself is well defined, i.e. ordY (fi) = ordY (fj). We
can therefore define an element in Div(X) simply as (f) =

∑
ordY (f)[Y ]. We have already

seen that this is a group homomorphism, which follows from the fact that multiplication of
meromorphic functions corresponds to addition in Div(X).

At first sight it might seem like this is a map onto Div0(X) rather than the whole of
Div(X), as required by Equation (2.3). This is not the case, and it follows from the fact that
we are working in local patches rather than globally. We shall make this more clear now by
defining the inverse map and showing it is a bijection.

Consider a D =
∑
ai[Y ] ∈ Div(X). Then consider any irreducible hypersurface Yi. This

is defined by the vanishing of some polynomial on X. Now locally we can express this as the
zero locus of a holomorphic function. As a concrete example, if we are considering X = CPn,
then if we consider the patch zi 6= 0, we can divide our polynomial through by this zi to give
us a projectively well defined result. This gives us a locally defined holomorphic function.2

So if we consider some open cover {Uj} for X, then the intersection Yi ∩ Uj is defined by
gij ∈ O(Uj) via

Yi ∩ Uj = g−1
ij (0).

2If this was a little hard to see, see the proof of proposition 3.2.3. of the Complex Manifolds notes.
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This construction is unique, up to the multiplication of elements in O∗(Uj). Now define
fj :=

∏
i g
ai
ij ∈ K∗X(Uj), which gives us a locally defined meromorphic function. Finally

consider the intersection Uj ∩ Uk: on this intersection gij and gjk define the same irreducible
hypersurface Yi ∩ Uj ∩ Uk, and so must only differ by the multiplication of some element
in O∗(Uj ∩ Uk). In this way we can "glue together" the different fjs to a global element
f ∈ H0(X,K∗X/O∗X).

Now clearly ordYi(fj) = ai, and so its hopefully clear that if we apply the first map (i.e.
from H0(X,K∗X/O∗X) to Div(X)) that we will get exactly D =

∑
ai[Y ] back, and so these two

maps are inverses of each other, and seeing as both are injective we have our bijection.

2.2.1 Divisor Line Bundles

There is an alternative, sheaf theoretic, definition of Cartier divisors which will prove partic-
ularly useful for us. It involves introducing a couple definitions.

Definition. [Picard Group] For a ringed space X, the Picard group is the group of iso-
morphism classes of invertible sheaves (i.e. line bundles) on X. Group multiplication is
the tensor product. In other words,

Pic(X) := H1(X,O∗X). (2.4)

Remark 2.2.2 . The above two definitions are indeed compatible, let’s see how. Let’s consider
some line bundle (i.e. an invertible sheaf) L and denote our local trivialisations by fi, i.e.
fi : Ui → O(Ui). Our transition functions are then given by ψij = fi · f−1

j which is an
automorphism on O(Ui ∩ Uj), but this is just an element of H0(Ui ∩ Uj ,O∗X). That is, two
holomorphic functions are related by a non-trivial holomorphic function. Finally we note that
ψik = ψijψjk, and so our cocycle condition is met and so we get an element in H1(X,OX).

Definition. [Fractional Ideal Sheaf] Let OX and KX denote the sheaf of holomorphic and
meromorphic functions on X. Then a fractional ideal sheaf is a sub-OX -module3 of KX .
A fractional ideal sheaf, F , is invertible if for all x ∈ X there is an open neighbourhood
x ∈ U such that the restriction of F to U is given by OX(U) · f where f ∈ K∗X .

We now note that the definition of an invertible fractional ideal sheaf is essentially equiva-
lent to the definition of a Cartier divisor. That is, thinking of a Cartier divisor as the collection
{UX(Ui), fi} we can define an invertible fractional ideal sheaf piece-wise. Similarly, given a
invertible fractional ideal sheaf, we can define a Cartier divisor. The important thing for us is
that, in this way, to a given divisor D ∈ Div(X) we can define a line bundle O(D) ∈ Pic(X).4

The following Lemma makes this more explicit.
3Let R be a ring, then an R-module is some abelian group (A,+) equipped with an operation · : R×A→ A

that satisfies the usual stuff (distributive etc). It is hopefully clear that KX is a OX -module, and so we can
define a sub-OX -module.

4We may also sometimes use the notation L(D) to denote the line bundle associated to a divisor.
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Lemma 2.2.3. There is a group homomorphism given by

Div(X)→ Pic(X)

D 7→ O(D),

where O(D) is the invertible fractional ideal sheaf associated to D.

Proof. First we use that a D ∈ Div(X) can be thought of as a Cartier divisor, i.e. a f ∈
H0(X,K∗X/O∗X). As we explained in the proof of Equation (2.3), such an f is given by a
collection of fi ∈ K∗(Ui) modulo multiplication by an element of O∗X . In other words, f
restricted to Ui is given by K∗(Ui) · g where g ∈ O∗X ⊂ K∗X , but this is exactly our invertible
ideal sheaf condition, and so we define a map D 7→ O(D). This is an element of the Picard
group as it is described exactly by the transition functions ψij = fi · f−1

j introduced above.
We now just need to show it is a group homomorphism, i.e. it respects the group structures.

That is, we need to show that

O(D +D′) = O(D)⊗O(D′). (2.5)

Well, let’s assume the Cartier divisors D and D′ are given by a common open covering5 and
transition maps {fi} and {f ′i}. Now recalling (see proof of Equation (2.3)) that we define
fi :=

∏
j g

aj
ji , it follows that the transition functions of D+D′ are given by {fi · f ′i}, but then

O(D+D′) corresponds to {(fi · f ′i) · (fj · f ′j)−1} = {ψij ·ψ′ij}. This latter term itself describes
O(D)⊗O(D′), and so we’re done.

Remark 2.2.4 . Note it is important not to confuse the subscripts i, j on ψ/ψ′ with components
of a matrix. In the sense that we defined the transition function for the tensor product of
two bundles by a matrix who’s entries are given by (g1)ijg2. Here our transition functions
are sections of O∗X(Ui ∩Uj) and so only have one component. The i, j labels are labelling the
open sets Ui, Uj . This is why {ψij · ψ′ij} does indeed correspond to O(D)⊗O(D′).

Note that O(D−D) = O(0) ∼= OX , and so it follows from Equation (2.5) that O(−D) =
O(D)∗ where ∗ denotes dual. This should start to ring some resemblance to the discussion
of tautological and hyperplane line bundles in the complex manifolds notes: Lemma 2.2.3
basically tells us that we can associate a line bundle to a divisor. This is exactly what we do
for the hyperplane line bundle, it is exactly the bundle corresponding to a hyperplane divisor
(hence the name). Let’s outline this a bit more clearly now.

Example 2.2.5 . Consider CPn and consider the hyperplane given by H = {z0 = 0}. This cor-
responds to the divisor 1·H = H. Our charts are given by Ui = (z)/zi, where (z) = (z0, ..., zn),
so our fi = z0/zi, and our transition functions are given by ψij = (z0/zi)(z0/zj)

−1 = zj/zi,
but these are exactly the transition functions for the hyperplane line bundle O(1). Really
when we write O(1) we mean O(1·H), and similarly O(n) means O(n·H). Then the comment
above then confirms that O(−1) = O(−1 ·H) is the dual of O(1).

5This can be done by passing to a refinement.
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We can, in fact, show Lemma 2.2.3 in a nice way by considering the following short exact
sequence of sheaves

0 O∗X K∗X K∗X/O∗X 0,

where exactness follows from O∗X → K∗X being injective and K∗X → K∗X/O∗X being surjective.
This short exact sequence in sheaves gives rise to a long exact sequence in cohomology, the
first few elements of which are

0 H0(X,O∗X) H0(X,K∗X) H0(X,K∗X/O∗X) H1(X,O∗X) = Pic(X) ...,
ϕ δ

and so Lemma 2.2.3 is seen simply as the map δ : H0(X,K∗X/O∗X) → H1(X,O∗X). We
can also see from here that a principal Cartier divisor (i.e. one that corresponds to an
element of Div0(X)) is a Cartier divisor that lies in the image of the map ϕ : H0(X,K∗X)→
H0(X,K∗X/O∗X). This leads nicely into the next Lemma.

Lemma 2.2.6. A divisor D ∈ Div(X) is principal if and only if O(D) ∼= OX .

Proof. Firstly we note that O(D) ∼= OX is the identity element of the Picard group. This
follows simply from the definition of an invertible fractional ideal sheaf: if F ∼= OX then
clearly F restricted to U is isomorphic to OX(U), i.e. we take the identity element in K∗X .

Now we just use our exact sequence above. If D is principal then it lies in the image of
ϕ : H0(X,K∗X) → H0(X,K∗X/O∗X). However it then follows from exactness that this divisor
is in the kernel of δ : H0(X,K∗X/O∗X)→ Pic(X), and so we have O(D) ∼= OX if D is principal.

Now assume that O(D) ∼= OX . Then the D ∈ Div(X) is given by a f ∈ H0(X,K∗X/O∗X)
with transition functions ψij = gi · g−1

j , where the gi ∈ O∗X(Ui) are the unit elements, i.e. g−1
i

just restricts us to Ui. Putting this together with the fact that ψij = fi ◦ f−1
j we can equate

the two and obtain fi · g−1
i = fj · g−1

j on the intersection, but this is just the statement that
fi = fj on the intersection and so our f is just a globally defined meromorphic function, and
therefore D = (f), i.e. it is principal.

We then have the following, useful, corollary.

Corollary 2.2.7. The group homomorphism from Lemma 2.2.3 provides an injection

φ : Cl(X)→ Pic(X), (2.6)

where Cl(X) is the Weil divisor class, Cl(X) = Div(X)/Div0(X).

We note that this injection is, in general, a strict inclusion. However we now have the following
proposition.

Proposition 2.2.8. If a line bundle L admits a global section it is contained in the image of
Equation (2.6).

Proof. The key thing to note is that a global section in a line bundle is a hyperplane of the
line bundle, and so corresponds to some divisor. Let s be such a non-zero global section and
denote by Ds the associated divisor. This establishes a link between the section of a divisor,
what we want is a link between the line bundle and Ds. Well, any line bundle can be defined
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by its sections, and any two sections are related by by a meromorphic function, which is itself
an element in Pic(X) (it’s a section in K(X)). So if we consider a s̃ = f ⊗ s, then we have,
recalling the group structure on each space,

φ([Ds]) = φ([Df +Ds]) = f ⊗ s = s̃ = φ([Ds̃]),

where we have used that Df ∼ 0 as viewed as an element in Cl(X). Then using that our map
is injective, we have Ds ∼ Ds̃, and so we really are talking about the whole line bundle.

2.2.2 Divisor Chern Class

The last thing we want to discuss before moving on to toric geometry is the Chern class of a
divisor. We note that this is a well defined thing, as we have just shown that a divisor D has
a corresponding line bundle O(D), and we know how to define Chern classes for line bundles.

Ok so what is Chern class of a divisor? Well line bundles have total Chern class c(L) =
1+ c1(L), as they are 1-dimensional. Then we recall that the first Chern class is a (1, 1)-form,
which is Poincaré dual real codimension-2 space, which is a complex hyperplane. In other
words, the first Chern class is a divisor. Putting this together with the fact that the Chern
classes are directly related to the connection, which in turn defines our horizontal subspace,
which are related to our sections, it is not a great leap to make the following claim.

Claim 2.2.9 . Let Pic∗(X) denote the group of isomorphism classes of line bundles that
admit a global section. Then the group homomorphism

c1 : Pic∗(X)→ Cl(X)

is the first Chern class of the line bundle.

Remark 2.2.10 . Recall that the Picard group is given by the cohomology class H1(X,O∗X).
In this manner, the first Chern class can also been seen as a map between cohomologies. We
have the short exact sequence of sheaves

0→ Z→ OX → O∗X → 0,

which induces a long exact sequence in cohomology, containing a morphism

c1 : H1(X,O∗X)→ H2(X,Z).

This is the first Chern class. The divisor class group corresponds to real codimensional-2
hypersurfaces. These are Poincaré dual to 2-forms, and so this map makes sense.

This is a very useful result. In particular, note that we can express the total Chern class
for a CY surface inside a projective space in terms of divisors. Explicitly, let A be an n-
complex-dimensional projective space defined as the direct sum of m projective spaces Bj .
We can think of A as being the union of (n+ 1) divisors Di, one for each hypersurface zi = 0,
where zi are the homogeneous coordinates of A. This is equivalent to saying that we can
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think of it as the direct sum of (n + 1) line bundles, one for each homogeneous coordinate.
Then recalling that c(L1 ⊕ ...⊕ Ln+1) =

∏n+1
i=1 (1 + c1(Li)), we have

c(A) =
n∏
i=0

(1 +Di). (2.7)

Similarly, the hypersurface is given by a polynomial P of set degree pj in each Bj factor.
Each of these define a Weil divisor Hj of order pj . Note that these Hjs are divisors in the
components Bjs, while the polynomial corresponds to a divisor in the full A, and so we have

c(P ) = 1 +
m∑
j=1

pjHj . (2.8)

These divisors Hj are clearly related to the divisors Di, and we will see exactly how later.
Let’s give a couple familiar examples to help ground this.

Example 2.2.11 . Let’s consider the CY defined by the quintic in A = CP4. The hyperplanes
zi = 0 are all linearly equivalent (simply by redefinition of the coordinates) and so D0 = D1 =
D2 = D3 = D4 = D, and so

c(CP4) = (1 +D)5

We then have the associated line bundle O(D) ≡ O(1), where the equivalence was explained
in Example 2.2.5. This then returns the familiar result c(CP4) = (1 +O(1))5.

Then the hypersurface is simply given by a degree 5 polynomial in CP4, and clearly
Hj = D, as this is the only divisor available to us. So we have

c(P ) = 1 + 5D,

which corresponds to the familiar result c(P ) = 1 + 5O(1).

Remark 2.2.12 . Note we are being a bit clumsy with notation as O(D) ∈ Pic∗(X) while
D ∈ Cl(x) and so we should really have different notation for the c appearing with Ds and
the c appearing with O(D)s. However this would just add more notation, and it is hopefully
clear what is meant, so we continue with this notation.

Example 2.2.13 . Let’s now consider a CY in A = CP3 ⊕ CP1. Here we have two inequivalent
Di divisors: for for hypersurfaces in CP3 and one for hypersurfaces in CP1. Let’s denote these
D3 and D1, respectively. Then

c(A) = (1 +D3)4(1 +D1)2 →
(
1 +OCP3(1)

)4(
1 +OCP1(1)

)2
,

which again is a familiar result. Our defining polynomial is then of degree (4, 2), and we have
H3 = D3 and H1 = D1, giving us

c(P ) = 1 + 4D3 + 2D1 → 1 + 4OCP3(1) + 2OCP1(1).

We now note an important point. We defined the first Chern class above for line bundles
that admit a global section, however we did not say that this global section need not vanish
anywhere. In other words, we are not only considering trivial line bundles, as this would be a
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bit boring. In fact, recall that a divisor is essentially defined by the order of zeros and poles.
We call the sum of these orders the degree of the divisor. If we have a holomorphic section
we have no poles, and so the degree is just given by the sum of the zeros. In other words,
the order of a divisor is given by the number of zeros of the section. We then make the (not
so hard to believe, see Chapter 1 of [1] for more details) claim that the integral of the first
Chern class of a line bundle corresponding to a divisor gives you the degree of the divisor.

This might all seem like somewhat unnecessary new notation. However, we will see later
when considering complicated hypersurfaces in toric varieties that the ability to express the
Chern class in terms of divisors will greatly simplify things.



3 | Toric Varieties

We are now ready to start actually discussing toric geometry, in particular we want to con-
struct toric varieties and look how they encode orbifolds. We then want to discuss how to
resolve these orbifold singularities, and also discuss the construction of Calabi-Yau spaces
from this perspective. As we will see, the tools of toric geometry make the construction of
Calabi-Yau manifolds of desired properties an almost trivial combinatorics game, and so it is
a very powerful tool.

There are two main approaches to the study of toric goemetry: the spectrum approach
and the coordinate approach. The former deals with a lot more algebraic geometry directly,
while the latter is probably more intuitive, especially for a first time approach to the subject.
For that reason, we shall focus almost entirely on the latter approach.

3.1 Basic Definitions

The most important thing for us to clear up immediately is what we mean by a torus. We do
not mean the topological torus S1× S1 that we are (hopefully) familiar with. Instead we are
talking about the algebraic torus, which we now define.

Definition. [Algebraic Torus] An algebraic n-torus T is given by the n-fold product of
C∗ := C \ {0}. That is T = (C∗)n, and we regard this as an abelian group.

The obvious question to ask is "why on Earth do we call this a torus?" Well the idea is
that one can construct the more familiar notion of a torus using the complex planes. For
example, it is a fact that the 2-torus can be viewed C with equivalence relations

z ∼ z + 2π and z ∼ z + 2πτ with τ ∈ C \ R.

This is not as crazy as it might sound: if we take τ = i then we are simply taking the complex
plane and defining two orthogonal S1s, one that runs along the real axis and one along the
imaginary axis. This gives us precisely the flat torus S1 × S1.

If the above explanation doesn’t make sense, it is not a problem, we will not really be
concerned with it anymore. From now on whenever we say "torus" we mean "algebraic torus".

Definition. [Toric Variety] Let X be a C variety. Then we call X a toric variety
if it contains an n-torus T as a dense open subset, such that the natural action of
the torus on itself (i.e. simply multiplication in (C∗)n) extends to an action of T
on the whole of X.

15
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Example 3.1.1 . Perhaps the most important example of a toric variety for us will be CPn and
WCPn. We show here that the former is indeed a toric variety. This is actually very straight
forward: let’s denote the homogeneous coordinates of CPn by [z0 : ... : zn]. Then note that
the open subset

T = {[z] | zi 6= 0∀i} = (C∗)n+1/C∗ ⊂ CPn

where the quotient C∗ is embedded diagonally into (C∗)n+1, is dense and is clearly isomorphic
to (C∗)n, and so is an algebraic torus. We can have this act on CPn simply by coordinatewise
multiplication, so we see that CPn is a toric variety. We similarly have that WCPn is a toric
variety.

Definition. [Cone] Let N be a rank r lattice, and define NR := N ⊗ R. Then a
(strongly convex, rational, polyhedral) cone σ ∈ NR is a set

σ := {a1v1 + a2v2 + ...+ akvk | ai ≥ 0∀i} such that σ ∩ (−σ) = {0},

where {v1, ..., vk} ⊂ N is a finite set of vectors called the generators of σ. We call
the boundary of a cone a face, and similarly we call a 1D cone an edge or a ray.

Definition. [Fan] A collection Σ of cones in NR is called a fan if:

(i) each face of a cone in Σ is also a cone in Σ; and

(ii) the intersection of any two cones in Σ is a face in each of the cones.

Remark 3.1.2 . Note that we consider a cone to be a face of itself. This sounds funny at first,
but note it is exactly what we need if we want to be able to say that a face is a cone. In other
words, consider the intersection of a cone σ with a proper face F 6= σ, σ ∩ F = F . If we did
not consider F to be a face of F then we would fail to satisfy (ii) above.

Definition. [Simplical Cone/Fan] A cone σ is called simplical if it can be generated by
a set of vectors {v1, ..., vk} which form a basis for the vector space they span. A fan Σ is
called simplical if all σ ∈ Σ are simplical. In these notes we will basically only consider
simplical fans.

Example 3.1.3 . An example of a fan in 2D with 7 generating vectors is the following

The diagram on the left just shows the generating vectors, while the right-hand diagram also
shows the 2D cones, indicated by the shaded regions. This fan contains a total of 14 cones:
the 6 triangular faces, the 7 edges and the origin. This example explains why we call it a fan:
this looks like a Chinese fan!
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Example 3.1.4 . An example of a fan in 3D with 4 generating vectors is the following drawing:
the left hand side are our 4 generating vectors, while the right is the full fan.

This fan contains 9 cones: the 4 triangular faces, the 4 edges, and the origin. It is hopefully
clear from the diagram that these cones obey they required properties to be a fan, if not this
is a bonus exercise to check.

Now we have defined our fan in terms of NR, which was in turn defined by a lattice N .
The obvious question to ask is "can we define a cone directly from the lattice N?" The answer
is "sometimes", which we now clarify.

For simplicity, consider a 2D lattice. Now take some lattice point, say (1, 2). Now draw a
line ρ from the origin through this lattice point and off to infinity.

ρ

This line looks exactly like a 1D cone corresponding to the vector v = (1, 2). Indeed ρ is
exactly the ray corresponding to this vector. We call the lattice point the ray generator. If we
then consider multiple ray generators we can build up our fan. So we see that we can make
a fan by considering the lattice points, but it is hopefully clear that we can not always take
a fan and associate a ray generator to each ray: generically if we have multiple ways, there is
no way to put them on a lattice such that each ray passes through a lattice point. We call
the cones/rays/fans that can be generated by a lattice rational. That is, we can identify a
rational fan Σ ⊂ Rn by a set of points in Zn. Unless otherwise specified, we shall assume we
are dealing with rational fans in these notes.

Finally it will be useful for the construction of toric varieties in the next section to intro-
duce the dual lattice to N . By definition, this dual lattice is just given by M := hom(N,Z),
where hom standards for "homomorphism". We shall denote the inner pairing of N and M
by 〈 , 〉 : M ×N → Z, and we also define the vector space MR = M ⊗ R.

3.2 Constructing Toric Varieties Using Fans

Ok great, so we’ve introduced toric varieties and then introduced our fans, the obvious ques-
tion is "what do these have to do with each other?" At first sight there doesn’t seem to be
any clear relation between the two, but we shall now show that fans give us a very elegant



CHAPTER 3. TORIC VARIETIES 18

and simple way to construct toric varieties (and then Calabi-Yau hypersurfaces inside these
toric varieties) with all kinds of desired properties.

Before doing so, we want to stress that it is this link between the borderline trivial combi-
natorics game of picking points on a lattice and toric varieties, that gives us immense power
when constructing Calabi-Yau manifolds. This connection to algebraic geometry is missing in
the closely related study of G2/Spin(7) manifolds, and, as such, the latter are much harder to
construct explicitly and study. We can either see this as a good thing or a bad thing: it’s bad
because its more of a challenge, but it’s good because it might suggest there is a deeper idea
associated with G2/Spin(7) manifolds. We will not discuss these more here, but I do plan to
write some notes on these when I understand them better.1

Ok so how do we make a toric variety from a fan? Again there are two ways to do this:
using the spectrum construction or the homogeneous coordinate construction. We will be
focusing on the latter.

Consider some fan Σ, and let Σ(1) denote the set of edges in this fan. For concreteness, let
n = |Σ(1)|. Now recall that every edge has an associated generating vector, so we have a set
{v1, ..., vn} that described Σ(1). It is convenient to provide an ordering for these vectors, and
we shall often do this implicitly. Now the key point is that to each edge ρ (or equivalently the
associated vector) we associate a homogeneous coordinate zρ, so in total we have n coordinates
{z1, ..., zn} describing Σ(1). This is clearly a start to defining a variety, but what do we do
with these coordinates? Well, we next we introduce the following definition.

Definition. [Exceptional Set] Let S ⊆ Σ(1) denote any subset that does not span
a cone in Σ. That is {ρ1, ρ2} ∈ S if we do not have a 2D cone given by the face
joining ρ1 and ρ2. Then we define V (S) ⊂ Cn to be the linear subspace defined by
setting zρ = 0 for all ρ ∈ S. Finally we define the exceptional set of Σ to be

Z(Σ) =
⋃
V (S). (3.1)

Remark 3.2.1 . If the above definition is a little hard to follow on first reading, it will become
clearer in the examples given below.

Our toric variety is then going to be defined as a quotient of the space Cn \Z(Σ). We just
have to define the quotienting group. The idea is to consider the map

φ : hom(Σ(1),C∗)→ hom(M,C∗).

This is a map of maps, and is defined by mapping

φ :
(
f : Σ(1)→ C∗

)
7→
(
m 7→

∏
ρ∈Σ(1)

f(vρ)
〈m,vρ〉

)
.

1Obviously edit this sentence if/when done.
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If we work in terms of coordinates, so that vj = (vj1, ..., vjr) we can write φ explicitly as

φ : (C∗)n → (C∗)r

(t1, ..., tn) 7→
( n∏
j=1

t
vj1
j , ...,

n∏
j=1

t
vjr
j

)
,

(3.2)

where the dimensions follow from the fact that n = |Σ(1)| and N/M are rank r lattices, and
the notation follows from the fact that (C∗)k is a torus. We then define our quotienting group
by

G := ker
(

hom(Σ(1),C∗)
φ−→ hom(M,C∗)

)
. (3.3)

Let’s check that this does actually give a well defined action on Cn \ Z(Σ). It follows from
the definition that G ⊂ hom(Σ(1),C∗), and so given a g ∈ G and a ρ ∈ Σ(1) we can define
g(vρ) ∈ C∗. We then use this to define an action of G on Cn simply by

g(z1, ..., zn) =
(
g(v1)z1, ..., g(vn)zn

)
.

Finally, recalling the definition Equation (3.1), it is clear that this action is closed in Cn\Z(Σ);
that is, Z(Σ) just makes it so that certain elements can’t vanish together, but g(vρ) 6= 0, and
so this won’t change this behaviour. We now finally arive at the definition of a toric variety
associated to a fan.

Definition. [Toric Variety From Fan] Let Σ be some fan with n = |Σ(1)|, and
define Z(Σ) and G via Equations (3.1) and (3.3), then

XΣ :=
Cn \ Z(Σ)

G
(3.4)

is a toric variety. The dense open torus is simply given by T := (C∗)n/G ⊂ XΣ,
and it acts on XΣ by coordinatewise multiplication. It follows from Equation (3.2)
that T has rank r ans XΣ is an r-dimensional toric variety.

Remark 3.2.2 . Note that the definition Equation (3.4) really is a property of Σ not just the
rays used to generate it. This enters into the fact that the exceptional set Z(Σ) depends
explicitly on all the cones in Σ, not just the edges.

Remark 3.2.3 . We should clarify that the resulting toric variety XΣ not only depends on the
fan Σ but actually depends on the lattice N that Σ lies in. In particular, let Ñ ⊆ N be
a sublattice of finite index,2 then we have NR = ÑR, and so any fan Σ ⊆ NR can also be
considered a fan in ÑR. The important point is that we associate certain properties to XΣ

depending on how Σ sits on the lattice N or Ñ . The two resulting varieties XΣ,N and X
Σ,Ñ

2This essentially just means N is Ñ with some points removed. The index of the sublattice is given by
the number of cells in Ñ that fit into one cell in N . For example if we have N = Z2 then Ñ = Z(1, 2) =
{(n, 2n) |n ∈ Z} is a sublattice of index 2.
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are, of course, related, and we will see exactly how later. For now we shall just assume we
are working with the "nicest" lattice, i.e. the smallest lattice such that all generating vectors
lie on lattice points.

Before going on to consider some examples, we include a quick proposition that will be
useful for us later.

Proposition 3.2.4. Let N and Ñ be two lattices, which need not have the same dimension.
Then suppose we have two fans Σ ⊆ NR and Σ̃ ⊆ ÑR, then3

Σ× Σ̃ := {σ × σ̃ | ∀σ ∈ Σ and σ̃ ∈ Σ̃} ⊆ NR × ÑR

if a fan, and we have
X

Σ×Σ̃
= XΣ ×XΣ̃

.

3.2.1 Some Examples

Ok that was quite a bit of information, so let’s give some examples to help ground all this
information.

Example 3.2.5 . Let’s start with something we already know is a toric variety CPn. For ease
of drawing, we consider CP2. This corresponds to a 2-dimensional lattice with 3 generating
vectors. We claim that this corresponds to the following fan

v1 = (1, 0)

v0 = (0, 1)

v2 = (−1,−1)

where we have only drawn the edges, the rest of the cone is given by the 3 faces given by
pairing two of the edges.4 Let’s now verify that this is indeed CP2.

Firstly we note that the exceptional set is just point {0, 0, 0}, as the only combination of
edges which doesn’t span a cone is S = {(0, 1), (1, 0), (−1,−1)}. For clarity, this is not a cone
in Σ for two reasons: firstly if we defined σ012 = av0 + bv1 + cv2 then we would fail to satisfy
σ012 ∩ (−σ012) = {(0, 0)}; secondly even if it was a cone the intersection of σ012 and σ01

5 is
σ01, but this is clearly not a face in σ01. So we have C3 \ Z(ΣCP2) = C3 \ {(0, 0, 0)}.

Next we need to find the group G. From Equation (3.2) we have

φ : (C∗)3 → (C∗)2

(t0, t1, t2) 7→ (t−1
2 t1, t

−1
2 t0),

3The product σ × σ̃ is meant in the obvious way, i.e. we consider place the generating vectors of σ and σ̃
perpendicular to each other and consider all cones from these generators.

4Bonus exercise: check that this is indeed a fan.
5Hopefully this notation is clear, but as we will use it a lot going forward, we explain it once: this simply

means the cone with generating vectors v0 and v1.
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which follows from v0 = (v01, v02) = (0, 1) etc. Then G is defined as the kernel of this map,
i.e. we want the right-hand element to be (1, 1), which clearly requires t0 = t1 = t2, in other
words G = {(t, t, t) | t ∈ C∗} which clearly isomorphic to C∗, and so G ∼= C∗. We therefore
arrive as

XΣCP2 =
C3 \ {(0, 0, 0)}

C∗
= CP2.

Finally note that T = (C∗)3/G = (C∗)3/C∗, where the C∗ is embedded diagonally into C∗,
which is exactly what we had in Example 3.1.1.

Exercise

Verify that

v0 = (−1) v1 = (1)

is the fan corresponding to CP1, and check the corresponding torus agrees with Exam-
ple 3.1.1.

Example 3.2.6 . Next let’s look at a weighted projective space. Again for ease of drawing we
consider WCP2

3,2,1. This again corresponds to a 2D lattice with 3 generating vectors. If we
look through the details of Example 3.2.5, we see that the weightings of the coordinates enters
in by the mapping φ, which is directly related to the entries of the vectors {v0, v1, v2}. We
therefore just want to make it so that v2 is three times v0 in one entry and twice v1 in the
other. That is, we consider the diagram

v1 = (1, 0)

v0 = (0, 1)

v2 = (−2,−3)

where again we have only drawn the edges. We leave the rest of this calculation as a nice
exercise.

Exercise

Finish Example 3.2.6.
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Example 3.2.7 . Let’s now consider a new space, that will prove very useful to us going forward.
Consider 2D fan given by v1 = (1, 0), v2 = (0, 1), v3 = (−1,−n) and v4 = (0,−1) with n > 0.
The drawing of the edges is as follows6

v1 = (1, 0)

v2 = (0, 1)

v3 = (−1,−n)

v4 = (0,−1)

Now things are little more subtle when we ask the question "what are the 2D cones in this
fan?", as we cannot just take any cone spanned by two edges. Firstly we note that σ24 isn’t
a cone as it doesn’t obey σ24 ∩ (−σ24) = {(0, 0)}. Besides that, note that if we take both
σ13 and σ14, which are both well defined cones, their intersection would be σ14, which is
not a face in σ13. Similarly we can’t have σ13 and σ34. Clearly there are different fans we
can construct from these vectors, but here we want to consider the fan which contains cones
{σ12, σ14, σ34, σ23}, which we try to depict in the following diagram

σ23 σ12

σ14

σ34

Let’s now find the toric variety associated to this fan.
First, from the arguments above, we have that the exceptional set is given by

Z(Σ) = V (S24) ∪ V (S13) ∪ V (S1234)

= (z1, 0, z3, 0) ∪ (0, z2, 0, z4) ∪ (0, 0, 0, 0)

= (z1, 0, z3, 0) ∪ (0, z2, 0, z4)

where the last line follows from (0, 0, 0, 0) ∈ (z1, 0, z3, 0) ∪ (0, z2, 0, z4), and the notation on
the first line is hopefully clear.

Now we just need to find the group. We have the mapping

φ : (t1, t2, t3, t4) 7→
(
t1t
−1
3 , t2t

−n
3 t−1

4

)
,

6For anyone interested, I have used n = 3 in drawing this. Of course this is just for illustrative purposes
so it doesn’t really matter what value we pick.
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and so G is given by t1 = t3 and t2 = tn3 t4, or in other words G ∼= (C∗)2, which we can view
as the embedding

(C∗)2 ↪→ (C∗)4

(t, s) 7→ (t, tns, t, s).

So our toric variety is given by

XΣ =
C4 \

(
(z1, 0, z3, 0) ∪ (0, z2, 0, z4)

)
(C∗)2

.

Finally, the dense torus is given exactly by T = (C∗)4/(C∗)2, where the (C∗)2 is embedded as
written above.

This surface, denoted Fn, is known as the n-th Hirzebruch surface.

Example 3.2.8 . As a final example consider the fan with edges (0, 1) and (n, 1).

v1 = (0, 1) v2 = (n, 1)

The exceptional set for this fan is empty, as the only options are S ∈ {v1, v2, {v1, v2}}, all of
which correspond to cones in Σ. To be clear, this is different to the cases for CP2 and WCP2

321

which had Z(Σ) = {(0, 0, 0)}. The group action is then found from the map

φ : (t1, t2) 7→ (tn2 , t1t2)

and so G requires tn2 = 1 and t1 = t−1
2 . This is just the group Zn, and so we have

XΣ =
C2

Zn
.

The torus is given by T = (C∗)2/Zn.

These final two examples are going to prove very useful for us going forward, especially
when discussing fibrations and singularity blow ups. For this reason, it is important that
these two examples are well understood at this point.

3.2.2 Weightings, Compactness & Singularities

Ok great, hopefully those examples have helped ground the definitions that proceeded them,
and we can now go on to discuss how powerful these fan diagrams actually are.

Weightings

The first thing we want to notice is something that was hopefully made suggestively clear
from the examples: the group G gives us a quoienting corresponding to scaling(s) of the
coordinates directly related to the entries of the vectors. In particular we have

[z1, ..., zn] ∼
[(
λ
Q1

1
1 ...λ

Q1
`

`

)
z1, ...,

(
λ
Qn1
1 ...λ

Qn`
β

)
zn

]
, (3.5)
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where λα ∈ C∗ and
∑n

i=1Q
i
αvi = 0 for all α = 1, ..., `. In particular, for CP2 we have ` = 1

with λ = t and Q0 = Q1 = Q2 = 1, i.e. 1 · (0, 1) + 1 · (1, 0) + 1 · (−1,−1) = 0. Similarly for
WCP2

321 we have ` = 1 and Q0 = 3, Q1 = 2 and Q2 = 1. Then for Fn we have ` = 2 with
λ1 = t, λ2 = s and Q1

t = 1, Q2
t = n, Q3

t = 1, Q4
t = 0, Q1

s = 0, Q2
s = 1, Q3

s = 0, and Q4
s = 1.

It is notationally convenient to display all this information in the form of a weight system,
which we draw as

z1 ... zn

Q1
1 ... Qn1

...
Q1
` ... Qn`

So for the CP2, WCP2
321 and Fn we have

z0 z1 z2

1 1 1

z0 z1 z2

3 2 1
and

z1 z2 z3 z4

1 n 1 0
0 1 0 1

We haven’t said anything about Example 3.2.8, as this doesn’t have a weight system as there
is no way to get the v1 and v2 to cancel with non-zero Qi. In a way its weight system vanishes,
and so we don’t write anything.

Remark 3.2.9 . These weight system diagrams are actually incredibly useful as they encode a
lot of information. We will add more to them later, but for now notice that from the weight
system we not only get the scaling weights, we can use them to reconstruct the generating
vectors via

∑n
i=1Q

i
avi = 0. Further we can immediately read off the dimension of the space –

it is simply the number of columns minus the number of rows (excluding the row containing
the zis). This is not hard to see: the number of columns corresponds exactly to the number
of coordinates, i.e. the power n factor appearing in the numerator of Equation (3.4), while
the number of rows corresponds to how many different scalings we have, which corresponds
exactly to the dimension of the group G in the denominator of Equation (3.4). For example,
we see straight away that Fn is 2-dimensional from 4− 2 = 2. The fact that we can read off
the dimension will prove additionally useful later when discussing so-called toric divisors and
their linear relations.

Compactness

Next we want to ask the question "is it possible to read off whether the resulting toric variety
is compact or not from the fan diagram?" The answer is yes, and is the content of the next
proposition.

Proposition 3.2.10. Let XΣ be a toric variety associated to a fan Σ. Then XΣ is
compact iff the fan Σ fills NR.

The proof of this proposition is easier to see later when considering constructing a fan from a
toric variety – Section 3.4 – and so we put off a proof until then. For now we just note that
in the examples above, only Example 3.2.8 is non-compact.
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Singularities

We now discuss something that is really important for us: the presence of singularities.
We note, from the definition Equation (3.4), our toric varieties are orbifolds with potential
singularities, depending on what the group G is. We want to see how we can read off whether
a toric variety is singular or not, given its associated fan.

The key point is to note the following: consider some fan Σ and form the toric variety XΣ.
Now consider some cone σ ∈ Σ and form the toric variety Xσ ⊂ XΣ, which we can define as
the subset obtained by setting zρ = 1 for all ρ ∈ Σ(1)\{edges of σ}. We can then patch these
Xσ together to give XΣ =

⋃
σ∈ΣXσ. This is just the statement that a fan is given by the

union of its cones, and so the associated toric variety is given by the union of the subvarieties.
Now we define Σσ ⊂ Σ to be the fan given by σ and all of its faces (in the sense of a general

face, including all edges etc). From the explanation above, we have that XΣσ = ∪σ̃∈ΣσXσ̃.
Putting this together with the fact that there is clearly an injective embedding of σ̃ ∈ Σσ into
σ, simply by definition of Σσ, we have that ∪σ̃∈ΣσXσ̃

∼= Xσ. We can therefore conclude that
XΣσ

∼= Xσ. Finally note that Z(Σσ) = ∅, simply by the definition of Σσ: it contains all the
possible cones. We then have the following proposition.

Proposition 3.2.11. Let Σ be a fan and XΣ be the associated toric variety. Then
XΣ is smooth (i.e. non-singular) iff every cone σ ∈ Σ is generated by vectors which
form a Z-basis for σ ∩N .

Proof. We show that the basis condition implies smoothness. Consider any top-dimensional
cone σ ∈ Σ, by assumption this is generated by r linearly independent vectors, and so the
group G is trivial. This is easiest to see by considering the weight system: there is no way to
have these vectors cancel each other and so all Qiα = 0. Putting this together with Z(Σσ) we
have that XΣσ = Cr, and so Xσ

∼= Cr which is smooth. Finally putting this together with
XΣ = ∪σ∈ΣXσ, we conclude that Xσ is the union of smooth varieties, and so is smooth itself.

The reverse direction, that smoothness implies the basis criteria, is most easily shown
using the spectrum approach. As we are not discussing that in these notes, we omit the rest
of of the proof.7

For the examples discussed above, we see that:

• CP2 is smooth, which we know to be true,

• WCP2
321 is singular, which again we know to be true (see the end of the compelx manifold

notes),

• Fn is smooth only when n = 1, and

• Example 3.2.8 is smooth only when n = 1.

So we have a condition for when the toric variety, the obvious question for us to ask is
"when does this singularity correspond to an orbifold?" Recalling the definition, this is just
the question of "when is G a finite group?".

7For those unhappy with this, it’s not too bad as really we will only be interested in the direction we have
shown as our goal is to construct toric varieties from fans.
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Proposition 3.2.12. Let Σ be a fan and XΣ be the associated toric variety. Then XΣ is an
orbifold iff Σ is simplical.

Proof. Again we only show the condition =⇒ orbifold direction. Let σ ∈ Σ be a r-
dimensional cone, then by definition of a simplical cone it can be generated by r vectors
{v1, ..., vr} which form a basis for the vector space they span. There is therefore only a finite
number of ways we can get them to cancel each other, and so G is finite.

Of course every fan we have considered thus far has been simplical, and so we are dealing
with orbifold toric varieties.

3.2.3 Blow Up

We now discuss the important procedure of removing singularities from our toric varieties
using the fans. We have just shown that a toric variety is smooth iff all the cones are
generated by vectors which form a basis for the intersection of σ with N . So all we have to
do to make a singular toric variety smooth is to include more rays such that this condition is
met. The formal name for this is subdividing fans, which we now explain.

Definition. [Subdividing A Fan] Let Σ be a fan. Then another fan Σ̃ subdivides Σ if

(i) Σ(1) ⊂ Σ̃(1), and

(ii) Each σ̃ ∈ Σ̃ is contained in some σ ∈ Σ.

In terms of the toric diagrams, this is very straight forward: we can subdivide a fan Σ by
introducing a new ray which "splits" an existing cone into two cones, as the following diagram
is meant to indicate.

v1 v2 v1 vnew v2

As we explained above, the idea is to take a singular toric variety and subdivide the fan such
that we get a smooth result. This procedure is called a blow up, the naming of which shall
become clear shortly.

The above example is meant to remind us of Example 3.2.8, as we showed that is a singular
toric variety. Let’s explore the blow up for this fan now.

Example 3.2.13 . Recall that we have the fan

v0 = (0, 1) vn = (n, 1)

where we have suggestively renamed v1 → v0 and v2 → vn. We have shown that this is
a singular space given by XΣ = C2/Zn. To remove this singularity, we need to introduce
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new vectors so that every cone is generated by a basis of σ ∩ N , where N is a 2D lattice.
For v0 = (0, 1) the only edge that lies within σ0n that meets this condition is v1 = (1, 1).
However we then have the cone σ1n which gives rise to a singularity if n 6= 2. However
clearly all we have to do is include v2 = (2, n), and then continue this process until we reach
vn−1 = (n− 1, 1). For n = 3 we get the following subdivided fan

v0 v1 v2 v3

which gives a smooth toric variety with weight system

z0 z1 z2 z3

1 −2 1 0
0 1 −2 1

This weight system generalises to the general n case, which follows from

vn−1 + vn+1 = (2, 2n) = 2vn.

For a reason that will become clearer in Section 3.3.5, each of these (1,−2, 1) combinations
correspond to a CP1, so we have a total of (n − 1) CP1s. We can show this in a slightly
different way here.

The idea is to consider our space XΣ as a subvariety in C3, by considering some well
defined polynomial (just as we did when constructing Calabi-Yau manifolds in CPn in the
complex geometry notes). Here we have

[z0, zn] ∼ [αz0, α
−1zn] with αn = 1,

so the most general well-defined polynomial is generated by terms

zn0 , znn and z0zn.

Let’s label these as x = zn0 , y = znn and w = z0zn, and consider them as coordinates for a C3.
The our defining polynomial is

P = wn − xy = 0 ⊂ C3,

where the minus sign is included for later convenience. Now it is a fact that a orbifold defined
by a zero locus of a polynomial is singular only at points where P = ∂iP = 0, where the
derivatives are w.r.t. the coordinates, of course. For our P we see straight away that our
orbifold is smooth everywhere apart from at (x, y, z) = (0, 0, 0). This is clear from the fact
that we have a Zn invariance: the origin is the only point mapped to itself under Zn.

Ok so we want to remove this singularity, how do we do this? The idea is to slightly
deform our defining polynomial such that (0, 0, 0) is no longer singular. Before doing that, we
redefine (x, y, w)8 so that

P = wn − x2 − y2,

8I.e. define x̃ = x̃(x, y, w), ỹ = ỹ(x, y, w) and w̃ = w̃(x, y, w) to give this form and then relabel x̃→ x etc.
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for a reason that will become clear in a second. Now, if we deform P by the simple addition
of some non-zero constant ε,

P → Pε = wn − x2 − y2 − ε,

then we see that Pε|0,0,0 = −ε 6= 0, and so we remove the singularity.
What does the new space Xε look like, though? Well it’s a fact that the graph of

x2 + y2 = ε

looks like a cylinder with radius r =
√
ε. So our space Xε, which is defined by x2+y2 = wn−ε,

consists of a 2D plane with fibres corresponding to cylinders of radius wn − ε.
There are exactly n points on this plane where the cylinders degenerate, in the sense that

the radius vanishes. These are just the roots of wn = ε. Let’s consider two of these points
and consider a path in the (x, y) plane. If we then look at the path in the fibres (at a given
"height"), we get a series of circles of continuously varying radius, with the radius vanishing
at exactly the two end points of the curve.

γ

Well this is just a homeomorphic to a 2-sphere (the blue dashed line above), and using the
known result CP1 ∼= S2, we see that we get a total of (n− 1) independent CP1 factors, which
is exactly the result we wanted.

We now see more clearly why we call this procedure a blow up: we are taking the n points
at which our circle degenerates, and "blowing it up" to finite volume, giving a non-singular
space.

Remark 3.2.14 . To clarify, it is a non-trivial result that this deformation corresponds to the
subdivision of the fan explained above. A rough explanation (see Sections 2.6 & 2.6 of [2] for
a nice explanation) is as follows: We have a lattice Γ3,19,9 and within this lattice we have a
3-plane, Σ. This 3-plane is spanned by the holomorphic (2, 0)-form, Ω, and the Kähler form
ω.10

There is a theorem (Theorem 4 in [2]) that says we have a orbifold singularity iff the
3-plane Σ is orthogonal to the so-called roots of Γ3,19. The main "leap-of-faith" we need here
is the claims that

(i) The inner product of the root, α, and the Kähler form corresponds to the volume of the
P1 ∼= S1 at our singular points, and

9For clarity, this lattice turns out to be 22-dimensional and has signature (3, 19), hence the notation.
10Note [2] uses J to denote the Kähler form, however I have got used to using J for the complex structure

and ω for the Kähler form.
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(ii) We have a automorphism group on the 3-plane, so we can freely interchange which
directions correspond to Ω and which corresponds to ω in Σ.

So to remove an orbifold singularity, we just need to make sure that none of the roots are
orthogonal to Σ, i.e. we need to rotate how Σ sits in Γ3,19. It follows from our automorphism
that we can view this rotation in two ways: the root is non-orthogonal to

(i) ω ⊂ Σ: so we give a finite size to the sphere, thereby removing the singularity. This
corresponds to the subdivision of the fan.

(ii) Ω ∈ Σ: Note that the holomorphic volume form is intrinsically tied to the complex
structure (which determines what we mean by holomorphic vs antiholomorphic), so this
rotation of Ω corresponds to changing the complex structure. Then recalling (see section
4.2.1 of the Complex Manifolds notes) that changing the complex structure corresponds
to deforming the defining equation — as if we change J then the normal bundle, NX ,
changes, and we think of a non-zero section of NX as a deformation of P . So this
corresponds to our deformation discussion.

The important thing to note here is that this relation between blow up and deformation
is directly linked to our automorphisms, i.e. that we can link the complex structure to the
Kähler form. These automorphisms are specific to K3 surfaces, and so, in general, blow ups
and deformations are not equivalent.

3.3 T -Invariant Subvarieties & Toric Divisors

Ok now that we know how to construct toric varieties from fans, and how to check whether the
corresponding toric variety is compact and/or singular, we now want to discuss T -invariant
subvarieties and toric divisors. This will lead nicely into the construction of Calabi-Yau
hypersurfaces in our toric varieties.

3.3.1 T -Invariant Subvarieties

First let’s look at our T -invariant subvarieties. These are particularly easy to describe in
terms of our homogeneous coordinate description. Let Σ be a fan and XΣ the associated
toric variety. Then consider some σ ∈ Σ which has generating vectors {v1, ..., vk}. We can
associate a codimension k subvariety of XΣ to this cone via

Zσ := {z ∈ XΣ |z1 = ... = zk = 0}, (3.6)

where we see that it is codimension k from the fact that we have k conditions. Now as T
acts on XΣ by multiplication of non-vanishing complex numbers, this subvariety is clearly
T -invariant. Then note that if we have two cones σ, σ̃ ∈ Σ where the generating vectors of σ̃
are contained within those for σ (i.e. σ̃ is a face of σ), then the order of inclusion is flipped
for the T -invariant subvarieties, i.e. Zσ ⊂ Zσ̃. The claim is that these are the only types of
T -invariant subvarieities. Putting this together with the fact that if the cone is not in the fan
then Zσ would correspond to an element of the exceptional set Z(Σ), and so the subvariety
would be empty, we have the following Lemma.
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Lemma 3.3.1. There is a one-to-one correspondance between non-empty T -invariant sub-
varieites and cones in fan, given by the ordering reversing mapping σ 7→ Zσ.

It is interesting to note that each Zσ is in fact a toric variety, and we can construct
the lattice and fan from the lattice N and fan Σ for xΣ: simply take the quotient of N
by the sublattice σ ∩ N , and then project every cone in Σ which contains σ as a face onto
Ñ = N/(σ ∩N).

Example 3.3.2 . As an example, we can construct the T -invariant subvarieties of CP2 given in
Example 3.2.5. We list them below

σ Zσ
{0} CP2

{(0, 1)} z0 = 0
{(1, 0)} z1 = 0
{(−1,−1)} z2 = 0

{(1, 0), (−1,−1)} [1 : 0 : 0]
{(0, 1), (−1,−1)} [0 : 1 : 0]
{(1, 0), (0, 1)} [0 : 0 : 1]

which we can see obeys the order reversing inclusion, e.g. {(0, 1)} ⊂ {(0, 1), (−1,−1)} and
[0, 1, 0] ⊂ z0 = 0.

Exercise

Construct the T -invariant subvarieties for the remaining Examples 3.2.6 to 3.2.8, and
check they obey the order reversing condition.

3.3.2 Toric Divisors

The important case of Lemma 3.3.1 for us is that each one-dimensional cone corresponds to
a hypersurface in XΣ. That is,

we have a one-to-one correspondance between edges and toric divisors.

In what follows we shall denote the toric divisor corresponding to zi as Di.

Remark 3.3.3 . We call the divisor associated to a blow up, i.e. Dnew, an exceptional divisor.
We can think of exceptional divisors as hypersufaces which get "squashed" somehow. We will
give a more concrete definition of exceptional divisors after introducing birational equivalence
later.

Now recall that Lemma 2.2.3 tells us that to each divisor we can associate some form of
line bundle. For our toric divisors, these correspond to the hyperplane line bundles O(Di).
We can, of course, take a formal sum of our toric divisors to form some new divisor, i.e.

D =

n∑
i=1

aiDi.
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Let’s see what happens when we consider the case ai = 〈vi,m〉 for some m ∈ M , with M
being the dual lattice to N . Then consider some monomial za1

1 ...zann , which is a section of
O(
∑

i aiDi). Our equivalence relation Equation (3.5) then says that (just considering one α
value for simplicity) our monomial is equivalent to(

λQ
1
z1

)〈v1,m〉...
(
λQ

n
zn
)〈vn,m〉 = λ〈

∑n
i=1Q

ivi,m〉z
〈v1,m〉
1 ...z〈vn,m〉n .

Then recalling that
∑n

i=1Q
ivi = 0, we see that this monomial is completely invariant under

this scaling. This tells us that the monomial is globally well defined onXΣ, and so corresponds
to a globally defined memromorphic section, and so it must correspond to a section in a trivial
line bundle. That is we must have

n∑
i=1

〈vi,m〉Di ∼ 0 ∀m ∈M (3.7)

This gives us a set of linear relations between the divisors. It follows from the fact that
dimM = dimN , that we have dimN such linear relations between our toric divisors, i.e.
m has coordinates m = (m1, ...,mdimN ) and we can consider the linear relations given by
m1 = (1, 0, ..., 0), m2 = (0, 1, 0, ..., 0) etc. This gives us exactly dimN expressions. So in total
we have |Σ(1)| − dimN linearly independent toric divisors. We shall return to this shortly.

3.3.3 Calabi-Yau Condition

We now want to ask the question of "can we read off whether a fan corresponds to a Calabi-Yau
space or not?" The answer is yes, let’s now see how.

Recall (e.g. from the Complex Manifolds notes) that a Calabi-Yau manifold can be defined
as a Kähler manifold that has trivial canonical bundle. The canonical bundle is the line
bundle given by the top-dimensional exterior power of the cotangent bundle, i.e. it is the
generalisation of the determinant bundle. Next, it follows from the fact that a polynomial of
degree k in the coordinates can be identified with the hyperplane bundle O(k), that we can
also identity this with the k-th power of the tangent bundle: i.e. if a polynomial of degree
k exists, we can take k derivatives of it. The cotangent bundle is dual to this, and so it
follows that the canonical bundle is given by O(−

∑
iDi), where we have to set all ai = 1 by

antisymmetry.
So the Calabi-Yau condition becomes the requirement that

O
(
−
∑
i

Di

)
∼ O(0) ⇐⇒ −

∑
i

Di ∼ 0.

Putting this together with Equation (3.7), we see that our Calabi-Yau condition can be written
by the requirement that there exists some m ∈ MR such that 〈vi,m〉 = −111 for all i. This
gives us the following proposition.

11Of course we can drop this minus sign here, however we include it as it will provide a neat link later when
considering polytopes.
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Proposition 3.3.4. Let XΣ be a toric variety associated to some fan Σ. Then XΣ is
Calabi-Yau iff either of the following, equivalent, conditions apply

(i) All the generating vectors end on the same affine hyperplane in NR; or

(ii) The weights Qia obey
∑

iQ
i
a = 0 for all a.

Proof. (i) We can define a hyperplane in NR precisely by the condition

HN = {wi ∈ NR | 〈wi,m〉 = a}

for some fixed m ∈ MR and a ∈ R. So the condition 〈vi,m〉 = −1, where vi ∈ Σ(1)
defines a hyperplane in NR that all the generating vectors end on.

(ii) This follows simply from
∑

i〈vi,m〉Q1
a = 0 along with 〈vi,m〉 = −1.

Recalling Proposition 3.2.10, we then have the immediate, important, corollary.

Corollary 3.3.5. A toric Calabi-Yau manifold is non-compact.

3.3.4 Updating The Weight System

We now return to Remark 3.2.9, which told us that the weight system was useful and said it
would be useful when considering toric divisors and their linear relations. Let’s now see why
that is the case, and also see how we can encode information about a defining polynomial into
the weight system.

Recall that we write our weight systems as

z1 ... zn

Q1
1 ... Qn1

...
Q1
` ... Qn`

Now, to each coordinate zi we have an associated toric divisor Di, and so we can think of the
columns as representing these toric divisors, i.e. we edit the weight system to look like

z1 ... zn

Q1
1 ... Qn1

...
Q1
` ... Qn`

↑ ↑
D1 ... Dn
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Now, recall that we showed under Equation (3.7) that the number of linearly independent
toric divisors is given by |Σ(1)| − dimN . Putting this together with the fact we showed
in Remark 3.2.9, that dimN = (number of columns) − (number of rows), and the fact
that |Σ(1)| = (number of columns), we immediately conclude that the number of linearly
independent toric varieties is given by the number of rows. We can label these independent
divisors Hj , and add them to our weight system as

z1 ... zn

H1 → Q1
1 ... Qn1
...

...
H` → Q1

` ... Qn`

↑ ↑
D1 ... Dn

Indeed we can write the Dis in terms of the Hjs using the weights, i.e.

Di =
∑̀
j=1

QijHj .

This will become more clear when we look at examples in Section 3.3.6.
Next we note that a hypersurface in our toric variety is given exactly by a divisor, i.e. we

can express the defining polynomial, P , as a divisor. Whatever this divisor is, it can be related
to our Hjs by some given weights pj . We can add this polynomial to our weight system too
as

z1 ... zn P

H1 → Q1
1 ... Qn1 p1
...

...
...

H` → Q1
` ... Qn` p`

↑ ↑
D1 ... Dn

(3.8)

Finally, we recall from the Complex Manifolds notes, that the total Chern class of a
hypersurface space, X, in some ambient space, A, is given by

c(X) =
c(A)

c(P )
,

where P is the defining polynomial. Now recall from Section 2.2.2 that we have

c(A) =
n∏
i=1

(1 +Di) and c(P ) = 1 +
∑̀
j=1

pjHj , (3.9)

which we shall verify when considering examples below. In particular, we notice that if want
a Calabi-Yau hypersurface we require
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pj =

n∑
i=1

Qij , (3.10)

the proof of which is the content of the next exercise.

Exercise

Given Equation (3.9), show that the first Chern class of X is given by

c1(X) =
∑̀
j=1

( n∑
i=1

Qij − pj
)
Hj ,

and hence prove the above Calabi-Yau condition.

3.3.5 Intersection Numbers & Fibration Structure

Before going on to study some examples to ground all this information, first we want to discuss
intersection numbers between the divisors and how this relates to the fibration structure of
our toric variety.

Intersection Numbers

We have shown that each homogeneous coordinate gives rise to a toric divisor, which is a
hypersurface in XΣ. We now want to ask the question "do these hypersurfaces intersect each
other, and do they intersect themselves?" The answer to the latter comes from answering the
former and then using Equation (3.7).

So how do we know if two toric divisors intersect each other? With some thought, it is
clear that this happens only when the corresponding vectors form a cone in the fan. The
most intuitive way to see this is probably just the fact that if they generate a cone in Σ, then
by Lemma 3.3.1 they form a codimension 2 subvariety. This subvariety is formed exactly as
the intersection of the 2 toric divisor hypersurfaces, which follows immediately from Equa-
tion (3.6). From here, we use Equation (3.7) to write the self intersection D2

i as Di · (−aj)Dj

for j 6= i.
In order to be able to work out the self intersection numbers, we obviously need to know

what the Di ·Dj with j 6= i are. In fact the general k-point intersection Di ·Dj · ... ·Dk plays
an important role for us. Why? Well recall from the Complex Manifolds notes that when we
wanted to compute the Euler characteristic we first found the top Chern class and integrated
that over the space. Before we always just quoted the result that, for CPn,

∫
Dn = 1, or if

we were considering CPn1 ⊕ ...⊕ CPnm that
∫
Dn1

1 ...Dnm
m = 1. However we already noted at

the end of those notes that when you start considering weighted projective spaces you need
to be more careful as you get fractional results. So what is going on?

Well Di ·Dj is the intersection of the corresponding hyperplanes. So if Di ·Dj = 0 they
don’t intersect, while if Di · Dj = 1 they intersect exactly once. We then generalise this to
the case of n hypersurfaces intersecting. The key point is that if they only intersect once the
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resulting intersection space is smooth. So we conclude that Di ·Dj ... ·Dk = 1 if the generating
vectors {vi, vj , ..., vk} form a basis of a lattice, as per Proposition 3.2.11. This is precisely
why we always took

∫
Dn
i = 1, which we shall clarify shortly.

Now note that we also have that Di ·Dj ... ·Dj = 0 if the span of the generating vectors
don’t span a cone in Σ. That is, if {vi, vj , ..., vk} don’t span a cone in Σ then, by definition of
the exceptional set, their common zero locus (which is exactly the intersection of the divisors)
is removed from the toric variety XΣ. So the intersection does not contribute to the integral
over XΣ, or any subspace, i.e. we require Di ·Dj · ... ·Dk = 0.

We shall talk about our examples shortly to help clarify the details, but first let’s discuss
fibration structure, so that we can discuss both in the examples.

Fibration Structure

Looking at the toric diagrams, it is tempting to start thinking of the lines as representing
surfaces and so the diagram looks like a fibration over some base space. That is the diagram
for Fn almost looks like two copies of the diagram of CP1 at right angles to each other, the
only problem being that v3 doesn’t lie in the same plane at v1. This intuition can actually be
made more formal and does indeed lead to a discussion of fibration structures for our toric
varieties. The important piece of information we need is that of a morphism between fans.

Definition. [Fan Morphism] Let Σ/Σ̃ be a fans in lattices NR/ÑR, respectively. Then a
fan morphism from Σ to Σ̃ is a homomorphism ψ : N → Ñ , such that for every cone σ ∈ Σ
the image under ψ ⊗ R is contained in some cone of Σ̃. We say that ψ is compatible with
Σ and Σ̃.

Our fan morphisms are, as the name states, morphisms between fans. Of course what is
of more interset to us is how these relate to morphism between the toric varieties associated
to the fans, i.e. can ψ : N → Ñ give/tell us anything about a map φ : XΣ → X

Σ̃
? The

answer is "yes", and in order to explore it, we need the notion of a toric morphism, which is
defined as we might expect.12

Definition. [Toric Morphism] Let Σ/Σ̃ be a fans in lattices NR/ÑR, respectively, and let
XΣ/XΣ̃

be the associated toric varieties. Then a morphism φ : XΣ → X
Σ̃
is called toric

if φ(T ) ⊆ T̃ (i.e. φ maps the torus in XΣ into the torus in X
Σ̃
), and φ|T is a group

homomorphism.

We then have the following theorem.

Theorem 3.3.6. Let Σ/Σ̃ be a fans in lattices NR/ÑR, respectively.

(i) Let ψ : Σ → Σ̃ be compatible with Σ and Σ̃. Then there exists a toric morphism
φ : XΣ → X

Σ̃
such that

φ|T = ψ ⊗ 1 : N ⊗ C∗ → Ñ ⊗ C∗.
12We, of course, present this definition in terms of a toric variety coming from a fan, but the key when

defining any morphism is to ask yourself "what is the defining structure, and how to a preserve it under a
map?" This almost always gives you the correct answer. Here the defining structure is the dense torus, and
so we just want φ to preserve this structure.
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(ii) Conversely, if we have a toric morphism φ : XΣ → X
Σ̃
, then we have a ψ : N → Ñ

which is compatible with Σ and Σ̃.

Proof. Omitted. See Theorem 3.3.4 of [3] for more details.

We now return to Remark 3.2.3, which said that the toric variety XΣ actually depends
on the lattice N which Σ sits on. The idea is if Ñ ⊆ N is a sublattice of finite index, since
NR = ÑR, any fan Σ ⊆ NR can be viewed as a fan lying on Ñ . The inclusion mapping
ι : Ñ ↪→ N is compatible with Σ in Ñ and N , and so gives a toric morphism, the specific
manifestation of which is given in the next proposition.

Proposition 3.3.7. Let ι : Ñ ↪→ N be an inclusion mapping of a sublattice of finite index
Ñ ⊆ N . Then given a fan Σ ⊆ NR = ÑR, then we have the toric morphism

φ : X
Σ,Ñ
→ XΣ,N

which presents XΣ,N as the quotient X
Σ,Ñ

/H, where H = N/Ñ .

Proof. Omitted. See proposition 1.3.18 and 3.3.7 of [3].

We then have the following useful proposition.

Proposition 3.3.8. Let Ñ ⊆ N be a sublattice with dimNR = n and dim ÑR = k. Then let
Σ̃ ⊆ ÑR be a fan. As ÑR ⊆ NR, we can regard Σ̃ a fan in NR, in which case we shall denote
it Σ. Then

(i) If Ñ is spanned by a subbasis of N , then there is an isomorphism

φ : XΣ,N
∼= X

Σ,Ñ
× T

N/Ñ
∼= X

Σ,Ñ
× (C∗)n−k,

where the last line follows simply from the definition of an algebraic torus.

(ii) Let N ′ ⊆ N be a sublattice of finite index given by completing a basis for Ñ . Then XΣ,N

is isomorphic to the quotient of

XΣ,N ′ ∼= X
Σ,Ñ
× T

N ′/Ñ
∼= X

Σ,Ñ
× (C∗)n−k

by the finite abelian group N/N ′.

Proof. (i) If Ñ is spanned by a subbasis of N , then we have N = Ñ × N ′, where N ′ the
(n − k)-dimensional sublattice needed to complete the basis for N , i.e. N ′ = N/Ñ .
We then have that Σ = Σ̃ × Σ′, where Σ′ = {0} ∈ N ′R is the trivial fan. Next we
note that the toric variety XΣ′,N ′ ∼= TN ′ ∼= (C∗)n−k. Finally, the result follows from
Proposition 3.2.4:

XΣ,N
∼= X

Σ̃,Ñ
×XΣ′,N ′ ∼= X

Σ̃,Ñ
× T

N/Ñ
∼= X

Σ̃,Ñ
× (C∗)n−k.

(ii) This follows simply from part (i) and Proposition 3.3.7.
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This is hopefully starting to look a bit "fibration-y", i.e. we have that our toric variety is
given by the product of two spaces. However this seems like a global property, but fibrations
are a local thing. So we need to do a bit more work yet.

The next thing we need to introduce, is the notion of splitting a fan. This follows the
usual idea from exact sequences.

Definition. [Split Fan] Let N and Ñ be two lattices and let ψ : N → Ñ be a linear,
surjective mapping. Then define N0 := kerψ so that we have the short exact sequence of
lattices

0 −→ N0 −→ N −→ Ñ −→ 0.

Now suppose we have cones Σ ⊆ NR and Σ̃ ⊆ ÑR that are compatible with the ψ, and
define Σ0 := {σ ∈ Σ |σ ∈ (N0)R}.

Then we say Σ is split by Σ̃ and Σ0 is there exists a subfan Σ′ ⊆ Σ such that

(i) ψR : NR → ÑR maps every cone σ′ ∈ Σ′ bijectively into a cone σ̃ ∈ Σ̃ such that
σ′ 7→ σ̃ defines a bijection Σ′ → Σ̃.

(ii) The sum σ′ + σ0 ∈ Σ for any σ′ ∈ Σ′ and σ0 ∈ Σ0, and conversely that any σ ∈ Σ
can be written this way.

Split fans are useful to us for the following reason. Our lattice morphism ψ : N → Ñ
induces a fan morphism

φ : XΣ,N → X
Σ,Ñ

.

Then it follows from Proposition 3.3.8, and the fact that Ñ = N/N0, that

XΣ0,N
∼= XΣ0,N0 × TÑ .

Next using the fact that ψ : N0 → Ñ is compatible with Σ0 and the trivial fan in Ñ . This
induces the toric morphism

φ|XΣ0,N
: XΣ0,N → T

Ñ

We then make the following claim that we actually have φ−1(T
Ñ

) = XΣ0,N , and so we conclude

φ−1(T
Ñ

) ∼= XΣ0,N0 × TÑ ,

which is exactly a fibration structure: the patch in XΣ,N over T
Ñ

is given by T
Ñ

times
something, in this case XΣ0,N0 . We have shown that XΣ,N has a fibration structure over the
dense T

Ñ
⊆ X

Σ̃,Ñ
. We want to generalise this to a generic point in X

Σ̃,Ñ
. We note that the

above made no use of the actual splitting, i.e. conditions (i) and (ii) in the definition above.
The generalisation of this is given by the the following theorem.

Theorem 3.3.9. Let Σ be split by Σ̃ and Σ0, as per the above definition. Then XΣ,N

is a locally trivial fiber bundle over X
Σ̃,Ñ

with fibre XΣ0,N0. That is, X
Σ̃,Ñ

has an
affine open cover {Uσ̃} such that

φ−1(Uσ̃) ∼= XΣ0,N0 × Uσ̃.
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Proof. The key thing to note is that splitting requires φR : Σ′ → Σ̃ to be bijective. This is
why we have to consider things locally, i.e. we cannot consider the full XΣ,N as two cones in
Σ might map into the same cone in Σ̃. This will be clearer when we look at the Hirzebruch
surface again.

Pick a σ̃ ∈ Σ̃ and define

Σ(σ̃) := {σ ∈ Σ |ψR(σ) ⊆ σ̃}.

This is clearly a fan morphism, and so we have a toric morphism such that φ−1(Uσ̃) = XΣ(σ̃).
To complete the proof, then, we just need to show

XΣ(σ̃),N
∼= XΣ0,N0 × Uσ̃.

Now Σ(σ̃) is split by Σ0 ∩ Σ(σ̃) and Σ′ ∩ Σ(σ̃), which means that any cone in the fan corre-
sponding to Uσ̃ must be a cone in σ̃, i.e. we are considering Σ̃ to be given by σ̃ and all its
faces. So we have X

Σ̃,Ñ
∼= Uσ̃.

Now the short exact sequence induces the isomorphism N0 × Ñ ∼= N . We then have, by
the bijectivity condition (i), that there exists a map νR : σ̃ 7→ σ′ for all σ′ ∈ Σ′. It follows
from the definitions that we actually have νR(σ̃) ∈ Σ′ ∩ Σ(σ̃).

Putting all this together, we have that the isomorphism (N0)R × ÑR
∼= NR takes the

product fan (Σ0, (N0)R)× (Σ̃, ÑR) to the fan (Σ(σ̃), NR). Finally, using Proposition 3.2.4, we
obtain

XΣ(σ̃),N
∼= XΣ0,N0 ×XΣ̃,Ñ

∼= XΣ0,N0 × Uσ̃,

which completes the proof.

Now, that all seemed rather technical and a complete pain to check for a given toric
diagram. However with a bit of thought we see that we can almost instantly "see" the result.
Let’s elaborate.

In terms of the toric diagrams, we can think of our morphism as distorting the cones, e.g.,
most importantly for us, projecting them onto some hypersurface. The idea is that if the
edges all project into edges of some other fan, we know our starting toric variety contains the
projected toric variety in some form, as we have a toric morphism from the subfan Σ(1) to
the contained fan.

The obstruction to it being a splitting comes precisely by the questions

1. Are there any cones in the starting fan that don’t project into cones in the contained
fan?

2. Do any two cones map to the same cone?

The first question poses clear problems for the definition of our fan morphism, while the
second causes problems for the bijectivity condition. If the answer to both questions is "no",
then we have a splitting. In this case, our original toric variety contains this latter variety as
a simple product – it is the base space of the fibration.

However, if the edges project nicely but the cones do not, we cannot have a splitting, and
so then the projected variety is contained within the starting toric variety in some twisted
fashion, in particular we will see that it self intersects! This is an important and neat result,
so we summarise it in the following table.
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Edges Project
Into Edges

Cones Project
Into Cones Contained Manner

X X Product (embedding)
X × Twisted (self intersecting inclusion)

Finally, before discussing our examples, we want to quickly introduce some definitions and
a proposition.

Definition. [Birationally Equivalent] Let X and Y be varieties (need not be toric), and
assume X is irreducible. Then a rational map is a morphism from a non-empty open subset
U ⊆ X into Y , denoted f : X 99K Y . A rational map is called birational if there exists
a inverse of f that is rational, f−1 : Y 99K X. We say that X and Y are birationally
equivalent. A birational map is essentially a isomorphism between open subsets of X and
Y .

Definition. [Exceptional Divisor] Let f : X 99K Y be a birational map. Then a divisor
D, which corresponds to the codimension-1 subvariety Z ⊂ X is called exceptional if f(Z)
has at least codimensional-2 in Y .

Remark 3.3.10 . We now understand Remark 3.3.3 better: the blow-down corresponds exactly
to increasing the codimension.

Definition. [Ruled Surface] A surface, i.e. a 2D variety, X is called a ruled surface if it is
birationally equivalent to CP1 × C, for some curve C.

A ruled surface is actually a very intuitive idea, it is simply the motion of a line — the CP1

moving along C — and so is a surface that can be "ruled" like the lines on a ruler. Note that
the curve C is rather arbitrary, and, importantly for us, it can self intersect.

Proposition 3.3.11. Let π : X → C be a ruled surface. Then a generic fibre f ⊂ X does
not self intersect, i.e. f2 = 0.

3.3.6 Examples

Ok that was a lot of potentially very confusing wording, let’s discuss our examples to help
clarify.

Example 3.3.12 . We start with CP2. This corresponds to the fan with generators v0 = (0, 1),
v1 = (1, 0), and v2 = (−1,−1), with diagram

v1 = (1, 0)

v0 = (0, 1)

v2 = (−1,−1)
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As each pair of vectors spans Z2, we have

D0 ·D1 = D1 ·D2 = D0 ·D2 = 1,

From Equation (3.7) we then have

D0 −D2 ∼ 0 and D1 −D2 ∼ 0,

where the first equation comes from choosing m = (0, 1) and the second from choosing (1, 0).
This gives us

D2
0 = D0 ·D2 = 1, D2

1 = D1 ·D2 = 1 and D2
2 = D2 ·D0 = D2 ·D1 = 1.

We often depict the intersection numbers in a diagram as follows.

D0D1

D2

11

1

where the intersection between divisors is seen by them crossing and the self intersection
numbers are indicated by the numbers.

Now, if we consider the two projections corresponding to projecting onto the two entries
separately, we see that the edges project onto two copies of the CP1 diagram. Under both
projections σ01 projects into a cone of CP1, i.e. the upper right quadrant projects into a half
line on either axis, however, under the projection onto the first entry σ12 projects onto a full
line, which is not contained in a cone of CP1. Similarly, when we project onto the second entry
σ02 projects onto a full line. We therefore see that neither of these CP1 factors are contained
in a simple product manner, which is reflected in exactly the fact that all the divisors self
intersect.

Note that, as expected, CP2 is not a Calabi-Yau space as the three generating vectors do
not end on the same hyperplane. However if we only consider 2 of them, say v0 and v1, then
we do get a Calabi-Yau space. This is just the statement that if we consider the hypersurface
given by z3

2 = 0 then we have a Calabi-Yau space.
The weight system for CP2 is given by

z0 z1 z2

H → 1 1 1

↑ ↑ ↑
D0 D1 D2

from which we can immediately see D0 = D1 = D2 = H. These divisors all correspond
to the hyperplane line bundle OCP2(1), and we see, from Equation (3.9) that if we want a
Calabi-Yau space, we need to consider the divisor 3H, i.e. a section in OCP2(3), which is
exactly the result we got in the Complex Manifolds notes. Equally we have that

∫
CP2 H

2 = 1,
which is also what we used in the previous notes.
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Exercise

Consider the toric diagram for WCP2
321 given in Example 3.2.6, i.e. v0 = (0, 1), v1 =

(1, 0) and v2 = (−2,−3). Write down the weight system for this space, and confirm that
a Calabi-Yau space is given by a section in OWCP2

321
(6), as per the Complex Manifolds

notes.

Example 3.3.13 . Let’s now consider the Hirzebruch surface Fn. This had toric diagram

v1 = (1, 0)

v2 = (0, 1)

v3 = (−1,−n)

v4 = (0,−1)

First let’s look at the fibration structure. Again all the edges project into edges of CP1.
However now if we project onto the first entry, we see that all cones project onto half lines,
and so we do have a CP1 product factor. In contrast, if we project onto the second factor, the
cone σ23 projects onto a full line, provided n 6= 0, and so our second CP1 factor is contained
in a twisted manner. In the language of split fans, we have that Σ0 = {σ2, σ3} ∼= ΣCP1 and so
our fibres are CP1, given by (z2, z3). In other words, Fn is a non-trivial CP1-bundle over CP1.
The main contrast to the CP2 example above is that Fn is a CP1-bundle, it is just non-trivial.

As we have touched upon above, we can think of n as encoding the twisting nature of
this CP1 fibration. We can show this more clearly by showing that locally Fn is a trivial CP1

bundle. We restrict our base space CP1 (which is the horizontal projection) to the affine open
subspace C ⊂ CP1, given by removing the cone generated by (−1).13 In terms of the toric
diagram above, this corresponds to removing the v3 vector, leaving us with

CP1 × C CP1

C

13Bonus exercise, make sure you follow why this is a C.
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where the arrows are meant to indicate the projections, and we have labelled the corresponding
toric varieties. This shows us that locally we have a trivial CP1 fibre over our base space. In
other words, we have shown that Fn is a ruled surface, with the curve simply given by C = C.

Ok so now let’s look at the intersection numbers. Recalling our fan contains the following
cones

σ23 σ12

σ14

σ34

we have smooth cones generated by {v1, v2} and {v2, v4}, so

D1 ·D2 = D1 ·D4 = 1,

Then from Equation (3.7), with m = (1, 0) and m = (0, 1) again, we have

D1 −D3 ∼ 0 and D2 − nD3 −D4 ∼ 0.

It then follows from D1 ∼ D3 and the above intersection relations that

D3 ·D2 = D3 ·D4 = 1.

All other non-self intersections vanish, as {v1, v3} and {v2, v4} don’t span cones in Σ.
From here we get the self intersection numbers

D2
1 = D2

3 = 0, D2
2 = n and D2

4 = −n.

The important thing to note is the D1 and D3 don’t self intersect. Note this agrees with
Proposition 3.3.11: D1 and D3 correspond to setting z1 = 0 and z3 = 0 and so we are in the
[z2 : z4] line, it then follows fromD2

1 = D2
2 = 0 that our fibres are given by [z1 : z2] ∼= CP1. The

face that D2 and D4 self intersect proportionally to n encodes exactly the non-trivial nature
of the CP1-bundle: the base space is self intersecting. We have the following intersection
diagram

D3

D1

D4 D2

0

0

n−n

The weight system for Fn can be written14

14Note that there are other ways to write down a weight system corresponding to Fn simply by pairing the
vectors differently. However, they will all give rise to the same relations between the divisors, as otherwise
they would correspond to different spaces. A nice additional exercise is to check that this is indeed the case.
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z1 z2 z3 z4

H1 → 0 1 0 1
H2 → 1 n 1 0

↑ ↑ ↑ ↑
D1 D2 D3 D4

from which we can clearly see that D1 ∼ D3 and D2 ∼ nD3 + D4. Note that H2 is actually
the fibre. It is also interesting to note that if n = 1 then F1 corresponds exactly to the blow
up of CP2, and D4 is the exceptional divisor. This translates nicely in terms of the weight
systems: if we set n = 1 and then "forget about" D4 = H1, we are simply left with the weight
system for CP2.

Finally note that dimFn = 2 and so to find the Euler characteristic we need to know the
2-point intersections H2

1 , H
2
2 and H1 ·H2. We can work these out using our Di ·Dj relations.

We have

0 = D2
1 = H2

2 , −n = D2
4 = H2

1 and 1 = D1 ·D4 = H1 ·H2.

If we then compute the top Chern class, we can find the Euler characteristic using these
relations.

Remark 3.3.14 . Note in the above we got some negative intersection numbers. This seems
intuitively strange — what on Earth does it mean for something to intersect negatively?
— however we just take this to be a mathematical extension of our intuition. Really what
matters for us is how these intersection numbers relate to computations of things like the
Euler characteristic.

Remark 3.3.15 . We now see why in Example 3.2.13 the (1,−2, 1) factors correspond to a CP1:
if we just project down along with middle vector (the one with weight −2), the cones project
into cones of CP1, and so we have a CP1 factor.

Exercise

Compute the intersection numbersa of the toric divisors for the smooth fan given in
Example 3.2.13, i.e. the fan consisting of vectors {(0, 1), (1, 1), ..., (n − 1, 1), (n, 1)}.
You should get minus the Cartan matrix of SU(n).

aFor potential future reference, we will also sometimes call intersection numbers "inner forms".

3.4 Constructing Fans From Toric Varieties

We have seen how to construct a toric variety from a fan, we now want to ask the question of
when/how can/do we construct a fan from a toric variety? The answer to the when can we
question is "when X is so-called normal". We will not explain what that means here,15 but
just assume this is the case for us.

15Because I am not 100% sure yet. Note to self: obviously read up on this.



CHAPTER 3. TORIC VARIETIES 44

The key idea to constructing a fan from a toric variety relies in our one-to-one correspon-
dance between T -invariant subvarieties and cones in a fan, Lemma 3.3.1. Consider some toric
variety X which contains the torus T ∼= (C∗)r. We can form a lattice from this informa-
tion as N = hom(C∗, T ) ∼= Zr. This isomorphism is seen easiest by fixing the identification
T = (C∗)r, then we have the isomorphism Zr ∼= hom(C∗, T ) given by

(a1, ..., ar) 7→
(
t 7→ (ta1 , ..., tar)

)
. (3.11)

We call an element ψ ∈ N a one parameter subgroup. Given a ψ : C∗ → T , we can define a
map f : C∗ → X by f(t) = ψ(t) ·1T , where 1T is the identity element in T . Clearly the image
of f is contained within T . Now let’s consider the limit point limt→0 f(t). This may or may
not lie in X, but let’s suppose it does. Then the orbit closure

Zψ := T · lim
t→0

f(t)

is a non-empty, T -invariant subvariety of X. Then by Lemma 3.3.1 there must be some cone
in some fan corresponding to this T -invariant subvariety.

How do we extract this cone? We simply consider the set of all one parameter subgroups
ψ ∈ N such that Zψ exists, and on this set we define an equivalence relation ψ ∼ ψ̃ if
Zψ = Z

ψ̃
. We then fix an equivalence class and consider all the one parameter subgroups in

this equivalence class. If we then take the closure of the convex hull in NR = N ⊗ R, we get
a cone. If we then consider the collection of all cones formed this way, we get a fan, and we
have an isomorphism XΣ

∼= X between the toric variety constructed from this fan and our
original toric variety. It is perhaps not easy to see why this is a cone just from this argument,
but it will become clearer when we consider the CP2 example in a moment. First we want to
finally prove the compactness condition, Proposition 3.2.10.

Proof. (Of Proposition 3.2.10.) We shall prove the reverse: that if Σ does not fill NR then
XΣ is non-compact. Suppose this is the case, i.e.⋃

σ∈Σ

σ ( NR

Then there must exist a one parameter subgroup ψ ∈ N which satisfies limt→0 ψ(t) /∈ XΣ, as
otherwise there would be a cone in the fan corresponding to it. Putting this together with
ψ : C∗ → T ⊂ X, we must conclude that XΣ is not compact.

Example 3.4.1 . Once again let’s consider out X = CP2 example. We want to construct the
fan from the toric variety. We explained in Example 3.1.1 that the torus in this space is given
by

T = {[z0, z1, z2] ∈ CP2 | z0, z1, z2 6= 0}.

If we use our scaling to set the first entry to 1 we get

T = {(1, t1, t2) | t1, t2 ∈ C∗} ∼= (C∗)2.

The torus action on CP2 is then given by

(t1, t2) · [z0 : z1 : z2] = [z0 : t1z1 : t2z2].
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From Equation (3.11), our one parameter subgroups are given by

ψa,b(t) = (ta, tb)

where (a, b) ∈ Z2. Considering the action above with these one parameter subgroups, we have
seven possible one parameter subgroups who’s limit point t→ 0 lies in CP2. They are

a, b limt→0 ψa,b(t) Zψa,b

a > 0, b > 0 [1 : 0 : 0] {[1 : 0 : 0]}
a < 0, b > a [0 : 1 : 0] {[0 : 1 : 0]}
b < 0, b < a [0 : 0 : 1] {[0 : 0 : 1]}
a = b < 0 [0 : 1 : 1] {z0 = 0}
a > 0, b = 0 [1 : 0 : 1] {z1 = 0}
a = 0, b > 0 [1 : 1 : 0] {z2 = 0}
a = b = 0 [1 : 1 : 1] CP2

For clarity, let’s explain the a few entries (the rest are then hopefully clear)

• If a > 0 and b > 0 then ψa,b(t) = [1 : ta : tb] and so in the limit t → 0 the second two
entries vanish. The closure of this is just {[1 : 0 : 0]}.

• If a < 0 and b > a then we have [1 : ta : tb] = [t−a : 1 : tb−a], and so in the limit t → 0
we get [0 : 1 : 0], which has closure {[0 : 1 : 0]}.

• If we have a = b < 0 then we have [1 : ta : tb] = [t−a : 1 : tb−a] = [t−a : 1 : 1], and so
limt→0 ψa,b(t) = [0 : 1 : 1], which has closure {z0 = 0}.

If we plot these regions on a graph of (a, b) we get

a, b > 0a < 0

b > a

b < 0

b < a

a > 0, b = 0

a = 0, b > 0

a = b < 0

and then the origin corresponds to a = b = 0. This is just the toric diagram for CP2 with the
7 cones we’re used to by now. Note, comparing this result to Example 3.3.2, we see that we
have the same correspondance between the T -invariant subvarieties and cones in ΣCP2 , e.g.
[1 : 0 : 0] corresponds to the cone generated by {(1, 0), (0, 1)}.
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3.5 Polytopes

There is a particularly useful way to discuss toric varieties, particularly when discussing mirror
symmetry, and it is in terms of polytopes.

3.5.1 General Polytopes

First let’s forget about everything we’ve been doing, and in particular forget that we are
considering the pair of dual lattices (N,M), and disucss polytopes generally. We will use
notation that is suggestive to the cases when we do have lattices, but shall try be clear when
we do actually go to these specific cases. The content of this subsection is based off section
2.2 of [3].

Definition. [Polytope] Let MR be some real vector space. Consider some set of points
S ⊂MR. Then we can define a polytope by the convex hull of the set S, i.e.

∆ = Conv(S) :=
{∑

i

λimi

∣∣∣ ∑
i

λi = 1, ∀mi ∈ S, and λi ∈ R+
0

}
⊆MR.

The dimension of the polytope is equal to the dimensional of the smallest affine subspace
in MR that contains P .

As it hopefully clear from the definition, polytopes just generalise the idea of polygons
in 2D to any dimension, i.e. they are shapes who’s boundary is a bunch of points connected
with straight lines.

Now, consider the vector space dual to MR, which we call NR, and denote their inner
product by 〈·, ·〉. We then have the following definition.

Definition. [Polytope Face] Let (NR,MR) be a set of dual vector spaces and let ∆ ⊆MR

be a polytope. Then given a non-zero vector v ∈ NR and a a ∈ R, we can define

Hv,a := {m ∈MR | 〈m, v〉 = a} and H+
v,a := {m ∈MR | 〈m, v〉 ≥ a}.

Hv,a is clearly a hypersurface in MR, and H+
v,a is the upper half plane assocated to this

hypersurface. We call a subset F ⊆ ∆ is a face of ∆ if there exists a Hv,b and H+
v,b such

that
F = Hv,a ∩∆, and ∆ ⊆ H+

v,a.

This definition is hopefully intuitively clear. What we are saying is that we want to
consider some hypersurface in MR that "touches" ∆, and then the intersection of this hyper-
surface with ∆ is a face of ∆. We call a face of codimension-1 a facet, a face of dimension 1
an edge and a face of dimension 0 a vertex. Note we can think of a polytope as the convex
hull of its vertices. We give a pictorial example of this for a 2D polytope corresponding to a
triangle below.
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Hv,a

F
∆

We now note that a polytope ∆ is given precisely by the intersection of the a finite number
of half planes H+

vi,ai , i.e.

∆ =
⋂̀
i=1

H+
vi,ai

is a polytope. It then follows from the definition of Hvi,ai that the vectors vi are perpendicular
to surfaces Hvi,ai and point into the intersection, as this is exactly what we need to ensure
that 〈m, vi〉 ≥ ai for all m ∈ ∆. We give a pictorial example for a 2D polytope with ` = 4
below.

We then have the easily seen results

(i) The full polytope is considered a face of itself;

(ii) Every face is itself a polytope;

(iii) The intersection of two faces is a face.

These results should feel very familiar, indeed they are the same results we have for cones in
a fan! Indeed given a polytope, we can define a cone as follows.

Definition. [Polytope Cone] Let ∆ ⊆MR be a polytope, and let F denote a generic face.
Then we have a cone16

σ̌F :=
⋃
r≥0

r · (m− f),

for any m ∈ ∆ and f ∈ F , as above. If we consider all faces F in ∆ we get a fan Σ̌∆ ⊆MR.

The generators of the cone σ̌F can be thought of as the linearly independent lines connect-
ing the vertices in ∆ \ F to the vertices in F . What will be of most use to us is the cone/fan
dual to σ̌F /Σ̌∆.

16We use checked notation as for the work we will do, we like to think of MR as the dual space, denoting
everything with a check.
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Definition. [Dual Polytope Cone] Let ∆ ⊆ MR be a polytope and let Σ̌∆ be
the associated fan. Then, given a σ̌F ∈ Σ̌∆, we define a dual cone σF ∈ NR via
〈σF , σ̌F 〉 ≥ 0, i.e.

σF := {v ∈ NR | 〈f, v〉 ≤ 〈m, v〉, ∀m ∈ ∆ and f ∈ F}. (3.12)

Again the collection of such cones for all faces gives us a fan Σ∆ ⊆ NR.

Now note if the dimension of the fan Σ∆ ⊆ NR is d, then a k-dimensional face F ⊆ ∆
corresponds to a (d− k)-dimensional cone in Σ∆.

Now comes an interesting, and very useful for us, observation. If dim ∆ = dimMR, then
every facet F of ∆ has a unique supporting hyperplane, which is hopefully clear pictorially
— there is no room to "pivot" the Hv,a along the facet. We denote the hypersurface and half
space by

HF = {m ∈MR | 〈m, vF 〉 = −aF } and H+
F = {m ∈MR | 〈m, vF 〉 ≥ −aF }

and our polytope is given by

∆ =
⋂

F=Facet

H+
F = {m ∈MR | 〈m, vF 〉 ≥ −aF , ∀ facets F ⊂ ∆}, (3.13)

where we note that the doublet (vF , aF ) is unique only up to multiplication by λ ∈ R+ (which
follows from the linearity of 〈·, ·〉). The minus sign appearing in the above expressions is
included for later convenience.

3.5.2 Lattice Polytopes & Associated Toric Varieties

Everything in the previous subsection only required (NR,MR) to be a pair of dual vector
spaces. For clarity, remember that a cone is defined for a vector space, it is just that we have
been focusing on the cases when these are actually also given by lattices (N,M). We now do
a similar thing for our polytopes, and consider the, creatively named, lattice polytopes.

Definition. [Lattice Polytope] Let M be a lattice and let MR := M ⊗ R. Consider some
polytope ∆ ⊆MR. Then we call ∆ a lattice polytope if the vertices of ∆ are lattice points
in M . We call the ordered set ∆ ∩M = {m0, ...,mk} the characters of M .

It is important to note that even if MR is related to some lattice M , a general polytope
∆ ⊆ MR is not a lattice polytope. This is completely analogous to the case when we have a
cone who’s generating vectors are not lattice points. From now on, however, unless otherwise
specified, we will always be dealing with lattice polytopes and so simply refer to them as
polytopes.

The first thing we notice about such polytopes is that we can always make them top-
dimensional (simply by reducing the dimension ofM to match), and so Equation (3.13) always
applies. If we put this together with the fact that a facet corresponds to a 1-dimesional cone
in Σ∆, we can alter Equation (3.13) to
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∆ = {m ∈MR | 〈m, vF 〉 ≥ −aF , ∀vF ∈ Σ∆(1)}. (3.14)

The fact that we can produce a fan Σ∆ ⊆ NR from a polytope ∆ ⊆MR, means that we can
also produce a toric variety from ∆, simply by XΣ∆

following the material already discussed.
There is another way we can view this construction of a toric variety from a polytope, which
we now outline.

Consider some toric variety defined by some lattice N ∼= Zr, and interpret M as the dual
lattice, i.e. M = hom(N,Z). Similarly to the previous section, where we showed that we can
view N as hom(C∗, T ), we can interpret M as hom(T,C∗). Explicitly we have

mi : (t0, ..., tr) 7→
r∏
j=0

t
mij
j ,

where mij are the coordinates of mi ∈M , i.e. mi = (mi0, ...,mir).
In this way, we can interpret the characters of M as nowhere vanishing, holomorphic

functions on T . If we have characters {m0, ...,mk}, we can then construct the map

f : T → CPk

t 7→ f(t) :=
(
m0(t), ...,mk(t)

)
.

It follows immediately from mi(t) 6= 0 that such a map is an inclusion, and then from the fact
that each mi is distinct, that we have an embedding.

We note that this embedding is actually the embedding of a k-torus, where the action of
T on CPk is given by coordinatewise multiplication by f(t) = (m0(t), ...,mk(t)), i.e. it makes
CPk a toric variety. We then define CP∆ ⊂ CPk to be the closure of f(t), and note that, by
definition, our torus action is closed within CP∆, and so CP∆ is itself a toric variety.

Remark 3.5.1 . Note that the construction of CP∆ does not depend on how we defined our
characters, i.e. it does not depend on the ordering of ∆ ∩M .

Remark 3.5.2 . The toric variety constructed in this way is normal. A non-normal toric variety
can be constructed by considering a subset {m̃0, ..., m̃`} ( ∆ ∩M who’s convex hull is still
the full ∆. Unless otherwise stated, we will only consider normal varities, this remark is just
included for completeness.

Proposition 3.5.3. There exists an isomorphism XΣ∆
∼= CP∆, given by

(z1, ..., zn) 7→
[ n∏
i=1

z
〈m0,vi〉
i : ... :

n∏
i=1

z
〈mk,vi〉
i

]
where (z1, ..., zn) are the homogeneous coordinates of XΣ∆

and {v1, ..., vn} = Σ∆(1), the edges
of Σ∆.

Example 3.5.4 . The simplest example we can consider is the polytope given by the 2 vertices
{(1), (−1)} ⊂ R. The polytope is given by the convex hull of these points, which is simply
the line depicted below.
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m− m+

The characters are simply {(−1), (0), (1)} ⊂ Z. This has two proper faces, simply the vertices
m±, and it is hopefully clear the corresponding fan in N is given by generators v− = (1) and
v+ = (−1), where the notation means that v− is the generator corresponding to the face m−.
This gives the fan corresponding to CP1, and so we see that XΣ∆

= CP1. Explicitly, denoting
m0 = (−1), m1 = (0), m2 = +1, v1 = (−1), v2 = (0) and v3 = (+1), we have

(z1, z2) 7→
[
z1z
−1
3 : 1 : z−1

1 z3

]
which is an embedding of CP1 into CP2.

Example 3.5.5 . As a slightly more involved example, let’s consider the case of polytope given
by vertices {(0, 0), (1, 0), (0, 1)} ⊂ R2. The full polytope is depicted in the following diagram.

m0 m1

m2

To construct the fan Σ∆ we construct our σF . We have 3 1D faces in ∆ just given by the
black lines drawn above, i.e. F01 = {(x, 0) ∈ R2 | 0 ≤ 0 ≤ 1} and similarly we define F02 and
F12. It is hopefully clear that the cones associated to these faces are generated by v01 = (0, 1),
v02 = (1, 0) and v12 = (−1,−1), which we now simply label as v1 = (1, 0), v2 = (0, 1) and
v3 = (−1,−1), which we plot below along with the polytope.

F01

F02

F12

v1

v2

v3

which we recognise as the fan for CP2. We also note that the rays are normal to the faces
they come from, e.g. v1 = v02 is normal to the face F02. This is, of course, exactly the arrows
we had pointing inwards from our Hv,a hypersurfaces defining ∆. For this reason, we often
call Σ∆ the normal fan of ∆.

We can check we have CP2 using our map:

(z1, z2, z3) 7→ [1 : z1z
−1
3 : z2z

−1
3 ] = [z3 : z1 : z2],

where the equality follows from scaling by z3.
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Exercise

Considering the polytope with vertices {(0, 0), (2, 0), (0, 2)}, show that the resulting
toric variety is given by CP2 embedded into CP5 as

(z1, z2, z3) 7→ [x2
1 : x1x2 : x2

2 : x1x3 : x2x3 : x2
3]. (3.15)

This is known as the Veronese embedding of CP2.
Hint: If stuck, see Example 7.9.4 of [4], along with our example above.

This exercise highlights an important point: if we keep the shape of the polytope the
same, i.e. we just scale all vertices by the same positive number, then the normal fan, and
so resulting toric variety, is unchanged. What changes is how the space manifests itself. In
particular notice that every term on the right-hand side of Equation (3.15) is of homogeneous
weight 2 in the CP2 coordinates. We shall expand on this in the next subsection, in particular
see Example 3.5.6.

3.5.3 Calabi Yau Hypersurfaces

The above construction is very useful, however as the examples have demonstrated, we get
the full ambient toric variety, but we are often interested in hypersurfaces in these spaces
in order to construct Calabi Yau spaces. The obvious question to ask is "can we tweak this
construction so that we get the hypersurfaces? The answer is yes, and we now flush out the
details. This subsection is based off Appendix B of [5] and the interested reader is directed
there for more info.

As we have seen, our hypersurfaces are encoded in two pieces of information: the ambient
toric variety and the defining polynomial, which, as we explained in the complex manifolds
notes, is actually a section in a line bundle L. We can express our polynomial/line bundle in
terms of the divisor

D = c1(L) =
∑
i

aiDi, (3.16)

where Di are the toric divisors, which carry weights ai. So if we want to be able to produce
our hypersurface from a polytope ∆, we need to be able to produce both the ambient variety
and the divisor D.

Well, note that if we are given a divisor Equation (3.16) and the generating rays of our
variety, Σ(1), we can produce a polytope ∆P ⊂MR via

∆P = {m ∈MR | 〈m, vi〉 ≥ −ai, ∀vi ∈ Σ(1)}.

We call a polytope produced by a polynomial a Newton polytope.
So the idea is simply to run this backwards, which we summarise in the following nice

box.

Given a polytope Equation (3.14) (with ai ∈ N), we produce the ambient toric
variety by constructing the fan Σ∆, and then we define a hypersurface in this variety

by thinking of ∆ as the Newton polytope of a line bundle Equation (3.16). The
homogeneous degree of the hypersurface is given by

∑
i ai.



CHAPTER 3. TORIC VARIETIES 52

An important thing to notice is that if we consider the characters of ∆, we can produce a
basis for the group of holomorphic sections in L by

p(m) =
∏
i

z
〈m,vi〉+ai
i , (3.17)

which follows from the fact that the numerator is always a positive integer, as 〈m, vi〉 ∈ N>−ai .

Example 3.5.6 . Let’s try construct the hypersurface defined by a polynomial of degree k in
CP2. We have already seen that we get the ambient toric variety CP2 if we consider the
polytope with vertices {(λ, 0), (0, λ), (0, 0)} ⊂ R2 for some positive λ.

Labelling the generating vectors of CP2 as before, i.e. v1 = (1, 0), v2 = (0, 1) and v3 =
(−1,−1), our polytope is then given by a1 = a2 = 0 and a3 = `. This follows from

0 ≤ 〈m, (1, 0)〉 ≤ `, 0 ≤ 〈m, (0, 1)〉 ≤ ` and − ` ≤ 〈m, (−1,−1)〉 ≤ 0,

for all m ∈ ∆. Putting this together with the fact that we want a1 + a2 + a3 = k, the degree
of our polynomial, we see we need ` = k.

This is exactly the situation we had in the exercise at the end of the last subsection (which
has k = 2), however now we also have Equation (3.17), which allows us to read off basis for
holomorphic sections in our line bundle L = OCP2(k) easily. Explicitly we have

p((r, s)) = z
〈(r,s),(1,0)〉
1 z

〈(r,s),(0,1)〉
2 z

〈(r,s),(−1,−1)〉+k
3 = zr1 z

s
2 z

k−r−s
3 ,

which is always holomorphic as a lattice point in ∆ requires r + s ≤ k. In particular the
vertices correspond to

p((k, 0)) = zk1 , p((0, k)) = zk2 and p((0, 0)) = zk3 .

Remark 3.5.7 . At first it might feel a bit odd that we are setting a1 = a2 = 0 but saying
that we can produce a polynomial of non-vanishing degree in z1 and z2, which correspond to
D1 and D2. However we have to note that although CP2 does have 3 toric divisors, there
are dim CP2 = 2 linear relations between these toric divisors, and so we actually only have 1
linearly independent divisor. This linear relation is given exactly by the weights, so here we
simply have D1 ∼ D2 ∼ D3, and so the polynomial zr1zs2z

k−r−s
3 has divisor

rD1 + sD2 + (k − r − s)D3 ∼ (r + s+ k − r − s)D3 = kD3,

which is exactly what we had.

Ok great, so we know how to use polytopes to produce hypersurfaces in toric varieties.
Of course the case of most interest to us is a polynomial of degree (n+ 1) in CPn. With the
above remark in mind, we see that the line bundle for such a polynomial is given by

D =
∑

vi∈Σ(1)

Di,

i.e. we take each toric divisor with weight 1.17 This means we have set ai = 1 for all i, and
so our polytope is

17Note this will also be true for weighted projective spaces, because now the linear relations are D1 = 3D3

and D2 = 2D3 for CP3
321, for example, so the sum is D = D1 + D2 + D3 = 6D3, which is our Calabi-Yau

condition.
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∆ = {m ∈MR | 〈m, vi〉 ≥ −1∀vi ∈ Σ(1)}. (3.18)

As we have tried to be clear to emphasise, in general the vertices of ∆ are not lattice
points in M , i.e. ∆ is not a lattice polytope. As the examples above hopefully made clear,
if ∆ ⊆ MR is a lattice polytope, then the vertices of Σ∆ are lattice points in N . We can use
these lattice points to define a polytope, ∆◦ ⊆ NR, simply as their convex hull. We call ∆◦

the polar dual of ∆. The fan over ∆◦ is, of course, equal to the fan Σ∆. If we further impose
Equation (3.18), we call the pair reflexive. It is a necessary condition for reflexivity that the
origin is a unique interior point of the polytope.

Reflexive polytope will be of most interest to us, as these allow us to construct Calabi-
Yau hypersurfaces from toric varieties that lie on lattice points, which is exactly what we
were doing earlier. We get a specific Calabi-Yau hypersurface by specifying the defining
polynomial, which here corresponds to using Equation (3.17) with ai = 1, and then specifying
some complex coefficients αm to give us the terms we want, then considering the zero locus.
That is

0 =
∑
m∈∆

αmp(m) =
∑
m∈∆

∏
vi∈Σ(1)

αmz
〈m,vi〉+1
i

is our defining polynomial.



4 | Elliptic Fibrations

We now want to discuss a particular type of toric varieties, which demonstrate just how
powerful and simple this construction is: elliptic fibrations. From a string theory point of
view, elliptic fibrations are vital in the "pomotion" of M-theory to F-theory.1

4.1 Elliptic K3 Surfaces

The first thing we need to understand is what exactly an elliptic curve is. We work off the
following rough definition.

Definition. [Elliptic Curve] An elliptic curve is a smooth, sub variety defined by the
solutions to

y2 = x3 + ax+ b, (4.1)

where a, b are complex numbers. The smoothness condition can be expressed by the non-
vanishing of the discriminant

∆ = −(4a3 + 27b2).

As the title of this chapter suggests, we somehow want to fibre elliptic curves in our toric
varieties. The obvious question is "how do we do this?" Well, looking at Equation (4.1) and
trying to think of it as the hypersurface in some complex projective space, we see we get
something projectively well defined if

y ∼ λ3y, x ∼ λ2x, a ∼ λ4a and b ∼ λ6b.

With a bit more thought, we see that this can be written as a degree 6 polynomial in WCP2
321,

i.e. if we use coordinates [y : x : w] ∼ [λ3y, λ2x, λw], we have an elliptic curve via

y2 = x3 + fw4x+ gw6, (4.2)

where f, g are smooth functions. We can, in fact, obtain this equation from the general weight
6 polynomial in WCP2

321. That is, we can start from

0 = αy2 + βx3 + γw6 + δw2x2 + τw4x+ ρw3y + σxyw,

and then use standard change of variables techniques (i.e. y → ỹ(x, y, w) etc) to eliminate
terms to leave us with a ỹ2 = F (x̃, w̃) expression. In particular, we can shift y so that the y2

1Although I know very little about this topic, so shall make no further comments on this in these notes.

54
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term cancels the linear terms in y, and then further shift x so that the x3 term cancels the
w2x2 term. This will then give us something of the form Equation (4.2), where f, g depend
on (α, β, ...).

We now recall that the Calabi-Yau condition for a hypersurface in a weighted projective
space is given by d =

∑
wi, where d is the degree of the polynomial and wi are the scaling

weights. So for WCP2
321 we need d = 3+2+1 = 6, which is exactly what we have! So we have

just constructed a K3-surface2 as an elliptic curve in WCP2
321. This is known as an elliptic K3

surface. We will use these a lot, and so write this again in a nice box.

The hypersurface given by the zero locus of

P = −y2 + x3 + fw4x+ gw6

in WCP2
321 is an elliptic curve.

4.2 Fibrations

So far we haven’t really made use of our toric variety techniques, i.e. we can obtain an elliptic
curve just using the material from the complex manifolds notes. We now come to the second
part of the title of this chapter: the fibrations! It is at this point that the toric geometry
techniques really take the reigns and make otherwise highly non-trivial constructions much
easier to deal with. For example, let’s imagine we are asked to construct a Calabi-Yau 3-fold
given by an elliptic curve fibred over CP1. That is, for every point [z0 : z1] ∈ CP1 we want our
defining polynomial to look like Equation (4.1). This is an example of what we call an elliptic
K3 surface, as it is a K3 surface (that is a 2D Calabi-Yau) containing an elliptic curve.

The obvious thing to try is using our WCP2
321 construction of elliptic curves and somehow

add the the CP1 coordinates in. We could try to consider a simple product space and a
defining equation of the form

h(z0, z1)
(
− y2 + x3 + fw4x2 + gw6

)
= 0,

where h(z0, z1) is a degree 2 polynomial in the CP1 coordinates. The problem with this is
that our elliptic fibration wants the −y2 + x3 term to have unit coeffient, so here we would
have to divide through by h(z0, z1), and this might lead to a very bad singularity (as z0 or z1

may be zero somewhere)
With some thought, we can see the better option is to consider f and g to be functions of

[z0 : z1]:
P = −y2 + x3 + f(z0, z1)w4x+ g(z0, z1)w6

In this case, our singularity problem is reduced again to the requirement that the discriminant
∆ = −(4f3 + 27g2) be non-zero. However we now have a new problem of the fact that our
defining equation must be projectively well defined and so now the WCP2

321 coordinates must
have non-trivial weight under the [z0 : z1] scaling. In other words, f and g will now transform
non-trivially under the CP1 scaling, so at least the y2 and x3 terms must also transform so

2For clarity, recall that a K3 surface is a 2D Calabi-Yau space.
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that we can factor out the scaling, i.e. P → λmP , for some m ∈ N. We then further need
to require that our Calabi-Yau condition is met, and so we start getting into potentially very
confusing subtleties.

The point we now want to make is that the toric geometry construction makes this com-
putation a lot easier, and essentially a counting exercise. We will start with the elliptic K3
over CP1 as an introductory example to explain the idea in detail, and then quickly show how
we can generalise this to more complicated ideas.

4.2.1 Over CP1: An Elliptic K3 Surface

We start by recalling the fans of WCP2
321 and CP1:

(1, 0)

(0, 1)

(−2,−3)

(1)(−1)

Next we recall that in order to get a fibration, we need to have a fan morphism. Then in
order to make the CP1 our fibre we needed all cones to project into the CP1 cones. In order
to do this, it is hopefully clear that we need a 3D lattice. We take our CP1 fan morphism to
corresponding to projecting onto the third entry.

Now, for WCP2
321 to be a fibre, it follows from Theorem 3.3.9 that the third entries of

(vx, vy, vw) must be 0, i.e. we need these vectors to project onto the trivial fan of CP1, which
is 0. This is what ensures that every cone projects into an cone of CP1.

Great, all that is left to do is to consider what allowed values for the first two entries of the
vectors (v0, v1) are. We have the rule that under the projection onto the first two coordinates,
every edge must project into an edge. It follows simply, then, that the allowed entries are
scalar multiplies of (0, 0), (1, 0), (0, 1) (−2,−3).

So in total we have that every toric fibration of WCP2
321 over CP1 is given by vectors

(1, 0, 0), (0, 1, 0), (−2,−3, 0)



(0, 0, 1), (0, 0,−1)

(α, 0, 1), (0, 0,−1)

(0, α, 1), (0, 0,−1)

(−2α,−3α, 1), (0, 0,−1)

(0, 0, 1), (α, 0,−1)
...
(α, 0, 1), (β, 0,−1)

(0, α, 1), (β, 0,−1)
...

(4.3)
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where α, β ∈ N, and the . . . correspond to all other permutations (which are hopefully easy
to see).

Ok great, we have constructed all of the fibrations of WCP2
321 over P1, we now want to

take a hypersurface in this space that gives us an elliptic curve fibration over CP1. As before
we want this to come from the defining equation

P = −y2 + x3 + f(z0, z1)w4x+ g(z0, z1)w6. (4.4)

The questions we want to address is the weightings of each coordinate, and the Calabi-Yau
condition. Both of these things are contained in our weight systems, Equation (3.8). So
essentially what we need find are the Qij and pj entries of

y x w z0 z1 P

Qy1 Qx1 Qw1 Qz01 Qz11 p1

Qy2 Qx2 Qw2 Qz02 Qz12 p2

Our two scalings are the WCP3
321 and CP1 scalings. We shall take the top line, i.e. Q1, to

be the former. This line is straight forward: we don’t need z0 or z1 to be charged under this
scaling and so we simply get a Calabi-Yau polynomial in WCP2

321:

y x w z0 z1 P

3 2 1 0 0 6
Qy2 Qx2 Qw2 Qz02 Qz12 p2

So we just need to find the second line. In order to obtain a Calabi-Yau from the CP1

perspective, it follows that Qz02 = Qz12 = 1. Then we note that our elliptic fibration equation,
Equation (4.4), doesn’t require w to be charged here, as there is no term with just w in it.
So we can set Qw2 = 0.

y x w z0 z1 P

3 2 1 0 0 6
Qy2 Qx2 0 1 1 p2

If we want a Calabi-Yau, we require p2 =
∑

j Q
j
2, as per Equation (3.10), and so we have

p2 = Qy2 +Qx2 + 2.

We then simply use Equation (4.4): it follows from the y2 and x3 term that 2Qy2 = 3Qx2 = p2,
which we can easily solve to obtain Qy2 = 6 and Qx2 = 4. So in total we have

y x w z0 z1 P

3 2 1 0 0 6
6 4 0 1 1 12

We then finally apply this same calculation backwards to find the order for f and g, i.e. what
powers do [z0 : z1] appear as. The Q1 weighting won’t tell us anything as z0 and z1 are not
charged under this. However, the Q2 weighting gives us

12 = 1 ·Of + 4Qw2 +Qx2 , and 12 = 1 ·Og,
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which if you plug in the values above give us

Of = 8 and Og = 12.

Exercise

Show that for a general base space B which has first Chern class c1(B), that if we want
to fibre an elliptic curve over this in the same fashion as Equation (4.4) we require

Of = 3c1(B) and Og = 2c1(B).

Hint: Note that c1(B) =
∑

bQ
b
2 where b runs over the base space indices. This follows

from Equation (3.9) with A = B.

Lastly we want to ask "what variety does this defining equation lie in?" i.e. which option
in Equation (4.3) are we considering? To do this we recall that the weightings are related to
the generating vectors by the requirement that

∑
iQ

i
jvi = 0 for all j, so we have

3vy + 2vx + vw = (0, 0, 0) = 6vy + 4vx + v0 + v1.

As per Equation (4.3), we have vx = (1, 0, 0), vy = (0, 1, 0) and vw = (−2,−3, 0). Then
considering the options for v0 and v1, we see the only choices are

v0 v1

(−2,−3, 1) (−2,−3,−1)
(−4,−6, 1) (0, 0,−1)

(0, 0, 1) (−4,−6,−1)

We then construct the toric varieties corresponding to the fans. So in total, we can form
an elliptic K3 surface as a hypersurface in one of the above toric varieties via the defining
equation

P = −y2 + x3 + f8(z0, z1)w4x+ g12(z0, z1)w6. (4.5)

Remark 4.2.1 . We should note that we could also have chosen to give w negative scaling under
the CP1 scaling, i.e. use weight system

y x w z0 z1 P

3 2 1 0 0 6
0 0 −2 1 1 0

This would still require f(z0, z1) = f8(z0, z1 and g(z0, z1) = g12(z0, z1).
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Calabi-Yau Check

Let’s check that this does indeed correspond to a Calabi-Yau. From our weight system we
have 2 linearly independent divisors H1 and H2, and our coordinate divisors are related to
these as

Dy = 3H1 + 6H2, Dx = 2H1 + 4H2, Dw = H1 and D0 = D1 = H2.

So our ambient toric variety has Chern class

c(A) = (1+Dy)(1+Dx)(1+Dw)(1+D0)(1+D1) = (1+3H1+6H2)(1+2H1+4H2)(1+H1)(1+H2)2,

while the defining equation has

c(P ) = 1 + 6H1 + 12H2.

Our hypersurface then has total Chern class

c(X) =

∏
i(1 +Hi)∑
j(1 + pjDj)

,

which we can easily check has first Chern class

c1(X) = (3 + 2 + 1− 6)H1 + (6 + 4 + 2− 12)H2 = 0,

and so it is Calabi-Yau.

Euler Characteristic

We now want to find the Euler characteristic of this space. It is a K3 surface and so we
already know that the answer should be χ = 24, but let’s check this works out. As always,
the way we do this is by finding the top form and then integrating it over X, which we shall
lift to an integral over A using the normal bundle, i.e. wedging by c1(P ).

As we explained before, in order to compute the Euler characteristic we need to work our
the divisor intersection numbers. In this particular case, our ambient space is 3-dimensional,
and so we need to work our Hi · Hj · Hk for all i, j, k = 1, 2. As before, we do this by
considering which cones span a smooth cone, and also which don’t span a cone at all (i.e. lie
in the exceptional set). For concreteness, we pick the set of vectors

vy vx vw v0 v1

0 1 −2 −4 0
1 0 −3 −6 0
0 0 0 −1 1

From here we can see that {v0, v1} does not span a cone in Σ. Explicitly, we would have

σ01 = {(−4a,−6a, b− a) | a, b ∈ R+},

however the intersection of this with

σxw = {(c− 2d,−3d, 0) | c, d ∈ R+}
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is given by
−4a = c− 2d, −6a = −3d, and b− a = 0

so 2b = 2a = d and then c = 0. So the intersection is {−4a,−6b, 0} = 2vw, which is a face of
σxw but it not a face of σ01 and so the latter cannot be a cone.

So we instantly have D2
0 = D2

1 = H2
2 = 0. This is something we could have actually said

before: H2 corresponds to a fibre of a ruled surface (as our base space is CP1, and so by
Proposition 3.3.11 we expect H2

2 = 0.
So we are only left with H3

1 and H2
1 ·H2. We now use the fact that {vx, vy, v1} are clearly

a basis for Z3 and so correspond to a smooth space. We therefore have3

1 = Dx ·Dy ·D1 = (3H1 + 6H2) · (2H1 + 4H2) ·H2 =⇒ 1 = 6H2
1 ·H2.

Finally we use that {vx, vy, vw} does not give a cone: it would correspond to the origin of
WCP2

321, which we know is in the exceptional set.4 and so

0 = Dx ·Dy ·Dw = (3H1 + 6H2)(2H1 + 4H2)H1

=⇒ 0 = H3
1 + 4H2

1 ·H2

=⇒ H3
1 = −2

3
,

where we have used the H2
1 ·H2 = 1/6 result.

So we now compute c2(X) so that we can find χ. Using the formulas above, we can easily
check that we get

c2(X) = 11H2
1 + 46H1 ·H2

and so

χ =

∫
X
c2(X)

=

∫
A
c1(P )c2(X)

=

∫
A

(6H1 + 12H2)(11H2
1 + 46H1 ·H2)

= (6 · 46 + 12 · 11)

∫
A
H2

1 ·H2 + 6 · 11

∫
A
H3

1

=
1

6
(6 · 46 + 12 · 11)− 2

3
(6 · 11)

= 46 + 22− 44

= 24,

where we have tried to be reasonably explicit for clarity.
3These relations are meant to understood as being integrated over.
4We could have seen the D0 ·D1 = 0 result this way too, but it was instructive to use the above argument.
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Singularity Structure

We now want to look at the singularity structure of the elliptic fibre. As we have mentioned a
few times, an elliptic curve is singular when the discriminant vanishes, i.e. ∆ = 4f3+27g2 = 0.
Well we have seen that for our elliptic K3 surface we have f = f8(z0, z1) and g = g12(z0, z1).
So our space has 3 · 8 = 2 · 12 = 24 possible singular points, i.e. there are 24 solutions to
∆ = 0. We now instantly see that this is exactly the Euler characteristic of our space.

Find out why.

(−2)-Curves

Before moving on to talk about elliptic 3-folds we want to make a quick comment on what
are known as (−2)-curves. These are basically just sections of an elliptic K3 surface, and we
shall see where this name comes from now.

Let’s consider a generic curve C in an elliptic K3 surface. This is a one-dimensional sub
variety, and we have

c1(C) = c1(NC) + c1(TC),

where NC and TC are the normal and tangent bundles to C, respectively. This follow from our
usual short exact sequence story. Now c1(C) = c1(K3)|C , and, as a K3 surface is Calabi-Yau,
we have c1(C) = 0. If we then integrate the right-hand side over C, the c1(TC) term is going
to give us the Euler characteristic of the curve C, which we can write in terms of the genus
of C: ∫

C
c1(TC) = χC = 2− 2gC .

Now we note that we can think of the self intersection of C as the zeros of a section in
the normal bundle. Why? Well the normal bundle corresponds to deforming the curve (we
can think of N as being little "strings" attached perpendicularly to C that we can "pull" to
deform C) to a homologically equivalent curve. Any points that C intersects itself will remain
invariant under this infinitesimal deformation, as they must still self intersect after. So we
see that we can think of this deformation as a section in the normal bundle and the number
of zeros of this section corresponds to the self intersection C2.5 Ah, but we have already
seen/said way back in Section 2.2.2 that the zeros of a section of a line bundle is the integral
of the first Chern class of that line bundle! So we have∫

C
c1(NC) = C2

Putting this together we obtain
C2 = 2gC − 2.

So if we are considering a section in the elliptic K3 surface, which is isomorphic to P1 (the
base space), which in turn is isomorphic to S2, we have gC = 0, and so C2 = −2. This is
what we refer to as a (−2)-curve. In our case we have a (−2)-curve corresponding to Dw, i.e.
w = 0 is a section of the elliptic K3, which can be seen from Equation (4.5): if we set w = 0
then our defining equation has no [z0 : z1] dependence, and so must be a section.

5This is maybe a slight abuse of notation. C is the curve, we should really talk about the self intersection
of the divisor, but the idea is clear.
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Now note that if we want to obtain a smooth K3 surface from our space, we need to blow
up our 24 singular points. These singular points are orbifold singularities, and we have shown
that the blow up of such singularities correspond to subdiving a fan, i.e. introducing a new
ray. This ray has an associated toric divisor, the exceptional divisors. We also saw that this
blow up procedure corresponded to including a P1 ∼= S2 into the space. We therefore see that
exceptional divisors correspond to (−2)-curves.

We can word this in a slightly different manner: as we just said an exceptional divisor
corresponds to inserting a P1 factor into the toric variety. These have vanishing genus, and
so
∫
E c1(TE) = 2, where we are using E to denote this space. If we want our blown up space

to be Calabi-Yau we need to make sure the first Chern class doesn’t change, i.e. remains 0.
The first Chern class changes exactly as

c1(NE) + c1(TE),

and so we need to cancel this +2 factor, which is obtained by E2 = −2.

Remark 4.2.2 . It is important to note that this result is specific to K3 surfaces. This follows
from the fact that a hypersurface in a K3 space is a curve, i.e. it’s one-dimensional. It
is precicely for this reason that we had

∫
C c1(TC) = χC . When then need the Calabi-Yau

condition to set the left-hand-side to 0. In fact we showed back in Example 3.3.13 that
F1 (which is a 2D toric variety) corresponds to the blow of CP2, with D4 = H1 being the
exceptional divisor. However when n = 1 we have D2

4 = −1.

4.2.2 Over Fn: An Elliptic 3-Fold

We now want to repeat this story but for an elliptic 3-fold formed by fibering WCP2
321 over

Fn. We will be a lot quicker through this calculation, and a lot of the details are left as "do
I understand what’s going on checks".

We have weight system

y x w z1 z2 z3 z4 P

H1 → 3 2 1 0 0 0 0 6
H2 → 6 + 3n 4 + 2n 0 1 n 1 0 12 + 6n
H3 → 6 4 0 0 1 0 1 12

and so if we want an elliptic fibration, i.e.

P = −y2 + x3 + f(z)w4x+ g(z)w6

we require f(z) to have weights (0, 8 + 4n, 8) and g(z) to have weights (0, 12 + 6n, 12), where
the three entries correspond to going down the columns in the weight diagram.
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Exercise

Using the above weight diagram, show that for n = 0 the only non-vanishing 4-point
intersections are

H4
1 = 2, H2

1 ·H2 ·H3 =
1

6
, H3

1 ·H2 = −1

3
and H3

1 ·H3 = −2

3
.

Remark 4.2.3 . You should get H2
2 = H2

3 = 0. Note that this should make sense in
terms of ruled surfaces; think about what H2 and H3 represent.

In order to save doing essentially the same steps that we have already done, we do not
compute the Euler characteristic of this space. We simply leave all of this as work for any
readers.

As a final comment we mention that from here one can go on to discuss for which values
of n is such an elliptic 3-fold smooth. Here we mean the entire 3-fold, not just the fibres as
we discussed above when getting 24. The basic idea is to try factor out a zm1 factor in f, g
and ∆. There is then a table (see Table 1 of [6]) that tells you the type of singularity. We do
not discuss this here as it would involve introducing the ADE singularity results, which will
take up more space.



5 | Quick Summary

Let’s just quickly summarise the material we have covered.

• In Chapter 1 we covered the preliminary material of orbifolds and algebraic varieties.
This was mainly a list of definitions.

• We then began to study divisors in Chapter 2. We first looked at Weil divisors as formal
linear combinations of irreducible hypersurfaces. We then went on to look at the subset
of Weil divisors known as principal divisors. These the Weil divisors that come from
a meromorphic function f ∈ K(X). Using this definition we were able to introduce
the Weil divisor class group, before moving on to discuss Cartier divisors, which are
elements of a cohomology group. A key result for us was that the groups of Weil and
Cartier divisors are isomorphic.

Finally we saw the divisors are related to line bundles, clarifying why we used the
terminology "hyperplane bundle" in the Complex Manifolds notes. We used this line
bundle relation to talk about the first Chern class associated to a divisor. In particular
we showed that the total Chern class of an ambient space is given by Equation (2.7),
while the total Chern class of a defining polynomial is given by Equation (2.8). This
proved very useful later when trying computing Chern classes from our toric diagrams.

• Then in Chapter 3 we started to discuss the actual toric geometry. We started with the
basic definitions of toric varieties and fans/cones. We then showed how to use fans to
construct toric varieties resulting in the final result Equation (3.4).

After introducing our examples, we then introduced the weight systems and how to
check if the resulting toric varieties would be compact and singular. This lead into a
discussion of the blow up of orbifold singularities by subdividing a fan. We showed that
this was related to the intuition of literally "blowing up" a sphere at a point.

We then introduced toric divisors and discussed the linear relations between them and
demonstrated that a toric diagram is Calabi-Yau if the sum of the toric divisors is
zero. This is equivalent to saying that the generating vectors all line in the same affine
hyperplane.

Next we discussed intersection numbers and fibration structure. We showed how to use
the fan diagrams to compute the intersection numbers between the toric divisors and
whether the space contains a known subvariety as a subspace, in particular in relation
to fibration structures. We then returned to our examples and hopefully grounded all
that dense information.

64
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After a quick discussion of how to go backwards, i.e. using toric varieties to construct
fans, we introduced polytopes. These were convex hulls in our lattices. We showed how
polytopes can be used to produce fans and toric varieties. This lead into the discussion
of the Newton polytope and its dual. We saw that we can use a polytope to produce a
basis for the group of holomorphic sections via Equation (3.17). We then specialised to
the case of Calabi-Yau hypersurfaces and introduced reflexive polytopes.

• Finally in Chapter 4 we briefly discussed elliptic fibrations. The reasoning for this was
two fold: firstly it allowed us to see just how easily we can produce highly complicated
toric varieties and Calabi-Yau hypersurfaces using the toric geoemtery techniques; and
secondly because elliptic fibrations play a key role in the study of F-theory.

We worked through the example of an elliptic K3 surface formed as a hypersurface in
WCP2

321 fibred over CP1. We checked that this space was indeed a Calabi-Yau and also
computed its Euler characteristic. We then discussed the singularity structure of the
fibres and then concluded this example by introducing (−2)-curves.

Finally we very briefly demonstrated how this idea generalises to higher dimensional
cases, by giving the weight system for an elliptic Calabi-Yau 3-fold using Fn.
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