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0 | Introduction

Scattering amplitudes are the bread and butter of modern particle physics. Broadly speaking,
they describe the probability for a collection of particles to interact in a certain way. One
of the things that has been deriving the research in this area is that they have remarkably
simple mathematical constructions.

We are (hopefully) familiar with amplitudes1 from our previous QFT courses and we
know that we can calculate them from the Feynman diagrams. The natural question that
arises, then, is "why do we want a whole other course dedicated to this?" Well, as we will
hopefully convince, there is an alternate way to compute amplitudes that drastically reduces
the complexity of the computations and makes manifest these simplifications. In order to do
that, of course it is first useful to remind ourselves what exactly an amplitude is.

We will also clear up our conventions in the rest of this introduction.

0.1 What Is A Scattering Amplitude?

Definition. We define a scattering amplitude as a matrix element

A = 〈out|S |in〉 (1)

with our states being asymptotic past/future states — i.e. |in〉 is evaluated at t → −∞
and 〈out| at t → +∞ — they are given by direct products of single particle states with
definite on-shell momentum and polarisation. We denote them as follows |pi, εi〉.

Remark 0.1.1 . We shall work with the "mostly minus", (+,−,−,−), sign convention.

As we are aware, it is convenient to split A into two parts which correspond to connected
and unconnected diagrams. We do this by setting

S = 1 + iT

with T being the transition amplitude. Next recall that the LSZ formula states that2

〈out| iT |in〉 =

ni+nf∏
i=1

√
Zi (...)

1From now on we may simply say "amplitudes" to mean scattering amplitudes.
2More details about the LSZ reduction formula can be found in, for example, Chapter 8 of my IFT notes

or section 3.2 of my QFT II notes.
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CHAPTER 0. INTRODUCTION 2

with the ... stands for "sum of all amputated and connected Feynman diagrams dressed with
polarisations, with ni incoming states and nf outgoing states." The factor Zi is known as
the wavefunction renormalisation and it can be computed from the residue of the 2-point
function. The observable thing in the end is the so-called differential cross section, which is
obtained from |T |2.

0.2 What’s Wrong With The Feynman Diagram Approach?

We now return to the comment we made at the start of this introduction that although in
principle we know how to compute amplitudes from the Feynman diagrams that this course
aims to present an alternate method quoting the mantra of "it simplifies the calculations".
Let’s expand a little bit on why this is the case now.

Of course Feynman diagrams are an extremely useful tool to particle physicists, but noth-
ing is perfect and they do indeed have problems. This is not some new profound statement
but simply corresponds to the fact that when we want to work to higher accuracy with Feyn-
man diagrams we necessarily have to include more diagrams. As well as this calculating more
complicated processes naturally involves considering more particles and therefore more terms.
It is easy to see that we end up needing to process huge amounts of information. For example,
the n-point gluon amplitude grows as n!.

The big motivational point to notice is that, once these heavy computations are done, we
end up obtaining extremely nice expressions. That is we start of with some highly complicated
collection of data but cranking the handle on the calculation leads to huge simplifications at
some point. The idea of this course is to try reformulate the calculations in order to make
this simplifications manifest.

To give one last guiding remark, one of the main problems with the Feynman diagram
approach we seek to counteract is the fact that individual diagrams are not gauge invariant;
it is only their sum that is. Feynman diagrams also involve the computation of off-shell,
virtual, particles. However, as we should be aware, the amplitude must be gauge invariant
(it’s physically observable!) and it knows nothing about off-shell degrees of freedom (our
states in Equation (1) are on-shell).

The ultimate message is that the methods presented in this course are more than just
being more efficient/being clever, but they point towards new, alternative reformulations of
physics.

Remark 0.2.1 . A warning before proceeding: A lot of the initial work is going to be setting
up efficient notation. This might be boring at first, but it will have huge pay offs later. So
bare with it.

Remark 0.2.2 . Ultimately3 the reformulation presented here involves elements of twistor string
theory. Of course we will not go into the details here, but this remark is just to highlight this
fact.

3At least for N = 4 Super Yang-Mills theory.



1 | Spinor-Helicity Formalism

As we just said in the introduction, the idea is to reformulate stuff using the fact that we know
that the amplitudes are gauge invariant and only know about on-shell degrees of freedom. The
spinor-helicity formalism does just this: it is meant to make the on-shell-ness of the amplitudes
manifest, i.e. the momentum is on shell and the polarisation are gauge invariant.

Consider a 4d on-shell momentum. We can rewrite it in a slightly funny way

pα̇α := pµ(σ̄µ)α̇α =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
, (1.1)

where
σ̄µ = (1,−~σ)

and α̇, α = 1, 2. This should be familiar from the SUSY course, but to refresh our memories
is that locally1 the Lorentz group is the same as SU(2) × SU(2). The indices α, α̇ then
correspond to the fundamental representations in the two SU(2)s. Elements in each of the
SU(2)s are known as spinors.

The obvious question is "why do we write the momentum in this seemingly more compli-
cated notation?" The answer comes from considering the determinant of Equation (1.1):

det
(
pα̇α
)

= (p0)2 − (~p)2 = p2 = m2,

where the last line follows from our assumption that the momentum is on-shell. So the
determinant gives us the mass (squared), what use is this? Well now consider the case when
m = 0. Obviously this tells us that the matrix is degenerate, which in turn tells us that pα̇α

has rank-1. This means that we can decompose pα̇α as the outer product2 of two spinors:

pα̇α = λ̃α̇λα (1.2)

which is known as bispinor form.
1I.e. the Lie algebra.
2The outer product of two matrices is simply their tensor product. For our case of 2-column vectors,

λα = (λ1, λ2)T and λ̃α̇ = (λ̃1̇, λ̃2̇)T , it is simply given by

λ̃α̇ ⊗ λα =

(
λ̃1̇λ1 λ̃1̇λ2

λ̃2̇λ1 λ̃2̇λ2

)
.

We simply suppress the ⊗ in Equation (1.2) and will continue to do so throughout these notes. Hopefully it
will be clear from context (pα̇α is a 2× 2 matrix whereas the λ̃/λ are 2-column matrices) what is meant.

3



CHAPTER 1. SPINOR-HELICITY FORMALISM 4

Remark 1.0.1 . In these notes we will work with commuting spinors. That is, for a given α/α̇,
our λα and λ̃α̇ are ‘normal’, Grassman even, numbers that we can freely interchange. This
is in contrast to our convention in SUSY where we had anticommuting spinors. The reason
we can do this is not trivial at this point, and will be explained later. The idea is that we
split the amplitude into a commuting part and an anticommuting part. The latter part is the
colour structure and is contained completely within the generators T a.

Remark 1.0.2 . Note that in the above remark we said "for a given α/α̇" because it is only
the components we can commute. In other words

λαλ̃α̇ := λα ⊗ λ̃α̇ ∼= λ̃α̇ ⊗ λα =: λ̃α̇λα,

where ∼= means "isomorphic as algebras", but they are not equal. This is easily seen by the
act that pαα̇ 6= pα̇α using Equation (1.1).

Exercise

Let

λα =
1√

p0 + p3

(
p0 + p3

p1 − ip2

)
, and λ̃α̇ =

1√
p0 + p3

(
p0 + p3

p1 + ip2

)
.

Show that

pα̇α := λ̃α̇λα = (σ̄)α̇αµ pµ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
.

This gives confirmation that Equation (1.2) and Equation (1.1) agree.

If the momentum is real, then of course Equation (1.2) puts constraints on our λ̃/λs, in
particular λ̃ = λ∗, up to some real phase (i.e. a factor 2 etc). However if p ∈ C then the λ̃ and
λ are independent, this trick will be important later. You might make the argument that this
is non-physical, which is true, however we will forget about this for calculational purposes.
Namely we want to think of the λs independently and then at the end we will impose a reality
condition.3

Note that this decomposition is far from unique. For example if we took

λ→ eiφλ and λ̃→ e−iφλ̃

then p is unchanged. This rescalling freedom is generated by a U(1) generator, known as
helicity.4 Explicitly we have

h = −1

2

(
− λα ∂

∂λα
+ λ̃α̇

∂

∂λ̃α̇

)
, (1.3)

which obeys
3This is an example of where we have injected a bit of twistor theory to motivate our calculations. The com-

plex momentum comes from the fact that we consider complexified Minkowski spacetime and the momentum
is given by derivatives w.r.t. the coordinates, which are now complex.

4Its an example of a little group.
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hλ = −1

2
λ and hλ̃ =

1

2
λ̃, (1.4)

so undotted spinnors have helicity −1/2 and the dotted spinors have helicity +1/2. This
basically describes a rotation in the plane orthogonal to the propagation direction; the U(1)
group generated by helicity corresponds to rotation in the 2-plane orthogonal to the spatial
momentum.5

We can raise/lower the indices using the Levi-Civita tensor

λα = εαβλ
β and λ̃α̇ = εα̇β̇λ̃

β̇

with

εαβ = εα̇β̇ =

(
0 −1
1 0

)
(1.5)

Note when you invert it you get a minus sign, namely

εαβ = εα̇β̇ =

(
0 1
−1 0

)
so that we have

εαβε
βγ = δγα.

and similarly for the dotted indices. From this we have the trivial self consistency check

λα = εαβλβ = εαβεβγλ
γ = δαγ λ

γ = λα.

Remark 1.0.3 . For complete clarity, it only makes sense to contract an undotted index with
an undotted one, and similarly dotted with dotted. That is we shouldn’t be tricked by the
equal signs in Equation (1.5) and multiply εαβ by εβ̇γ̇ and try contract the β with β̇ to get
the identity matrix. In other words, the equal sign between εαβ and εα̇β̇ is mathematical
none-sense: the two objects live in different spaces (the two SU(2)s) and so there is no notion
of equality between them. This is probably a rather pedantic remark, but it is important to
be clear on.

The idea of raising indices naturally allows us to define inner products on our two spaces.6

With the above remark in mind, it’s important not to confuse the two separate inner products
— one for the undotted SU(2) and one for the dotted SU(2) — and so we adopt the standard
notation

〈ij〉 := λαi λjα and [ij] := λ̃iα̇λ̃
α̇
j , (1.6)

where the i, j label which particle we’re talking about (i.e. they label the momenta pi).
5Note that it is U(1) because we’re working in 4d. That is the plane orthogonal to the spatial momentum

is a 2-plane and so we just have a single angle and so it is abelian. In higher dimensions we have a 3-plane
etc.

6In other words the Levi-Civita tensors are essentially giving us a map to the dual space, which can be
used to define an inner product.
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Recalling Remark 1.0.1, i.e. we are working with commuting spinors, we see that our inner
products are antisymmetric:

〈ij〉 = −〈ji〉 and [ij] = −[ji].

In particular it tells us that the inner product of a spinor with itself vanishes 〈ii〉 = 0 = [ii].
This fact will be of great use to us in what follows and will allow us to drop a lot of terms.

We have
pαα̇ = εαβεα̇β̇p

β̇β = λαλ̃α̇

However we also have

εαβεα̇β̇p
β̇β = εαβεα̇β̇pµ(σ̄µ)α̇α = pµ(σµ)αα̇

where
(σµ)αα̇ = εαβεα̇β̇(σ̄µ)β̇β = (1, ~σ).

which just gives us Equation (1.1).

Remark 1.0.4 . Note that when we use the Levi-Civita tensor to lower a combination of α̇α
the order switches. That is we have pα̇α with the dotted first but pαα̇ with the undotted first,
and similarly for the (σ̄µ)α̇α and (σµ)αα̇.

Now consider the following

(pi)αα̇(pj)
α̇α = λiαλ̃iα̇λ̃

α̇
j λ

α
j = 〈ji〉[ij] = −〈ij〉[ij],

where again the i, j label which particle we are talking about (i.e. they are not spatial
components of the momenta). Now we can also write this in terms of the Pauli matrices

pµi p
ν
j (σµ)αα̇(σ̄ν)α̇α = pµi p

ν
j Tr[σµσ̄ν ]

= pµi p
ν
j 2ηµν

= 2pi · pj
= (pi + pj)

2,

where we have used
Tr[σµσ̄ν ] = 2ηµν ,

and where the last line follows from the fact that our momenta are null, p2
i = 0 = p2

j . Equating
these two quantities gives us a very important formula:

(pi + pj)
2 = 2pi · pj = −〈ij〉[ij]. (1.7)

To recap: essentially what Equation (1.7) allows us to do is replace the kinematics (i.e.
the momenta) of our null particles with inner products of spinor indices. This takes us part
way to our stated at the beginning of this chapter. It is only part way as we still need to
express the polarisations in terms of our spinors.
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1.1 Polarisations

Polarisations of external particles are obtained from solutions to the classical equation of
motion in the free theory. Let’s start by considering the massless free Dirac Lagrangian7

L = iψ̄γµ∂µψ ψ̄ := ψ†γ0,

with

γµ =

(
0 σµ

σ̄µ 0

)
. (1.8)

The equations of motion of course the Dirac equation

iγµ∂µψ = 0.

Now consider a solution of the plane-wave form, namely

ψ(x) =

(
χα(p)
χ̃α̇(p)

)
eipx.

Plugging this into the Dirac equation gives us

γµpµ

(
χα(p)
χ̃α̇(p)

)
= 0

which with Equation (1.8) reduces to

pµσ
µχ̃ = 0 and pµσ̄

µχ = 0.

We now employ the work from the previous section and write this in terms of spinors via

pµ(σµ)αα̇ = λαλ̃α̇ and pµ(σ̄)α̇α = λ̃α̇λα.

From this, and the fact that our inner products are antisymmetric, we see that

χα = λα and χ̃α̇ = λ̃α̇

is a valid solution (i.e. because λαλα = 0 = λ̃α̇λ̃
α̇), then by standard uniqueness theorems we

know this is the only solution. This motivates the following definitions.

|p〉 :=

(
λα
0

)
and |p] :=

(
0

λ̃α̇

)
(1.9)

and
〈p| :=

(
λα 0

)
and [p| :=

(
0 λ̃α̇

)
(1.10)

where the second set solve the equations of motion for ψ̄, namely ψ̄γµpµ = 0. Note the
placement of the α/α̇ indices in Equations (1.9) and (1.10).

We take all the particles to be outgoing and make the following definitions
7This is because the scalar fields don’t have polarisations so the first starting point is spin-1/2.
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Helicity +1/2 −1/2

Quark [p| 〈p|

Anti-Quark |p] |p〉

so that the solution [p| describes an outgoing quark with helicity +1/2, etc. If the momentum
is physically ingoing then we just make the substitution pµ → −pµ and h→ −h.

So we have a way to categorise the solutions to the free equations of motion in terms of the
spinors. We therefore can express the polarisations in terms of the spinors which is exactly
the goal we wanted to achieve. This was for spin-1/2 particles, i.e. Fermions, but the main
focus of this course will be on spin-1 particles, Bosons, which we now discuss.

1.2 Spin-1

As we just said, spin-1 particles correspond to Bosons, and in the standard model these in
turn correspond to our propagators, e.g. the photon and gluons. Our main focus will be on
gluons (and therefore QCD), with comments to other particles made.

1.2.1 Abelian (QED)

As always it is instructive to start off by discussion the abelian case, namely electrodynamics.
We have the classical Maxwell action

L = −1

4
FµνF

µν Fµν := ∂µAν − ∂νAµ.

As we know from previous courses, this admits a gauge symmetry

Aµ → Aµ + ∂µΛ

which can easily be used to show that Fµν itself is invariant. We can use this freedom to
impose Lorenz gauge

∂µA
µ = 0. (1.11)

In this guage, the equations of motion simplify to

0 = ∂µF
µν = ∂µ

(
∂µAν − ∂νAµ

)
= ∂2Aν ,

which is just the wave equation (
∂2
t −∇2)Aν = 0.

We now go to momentum space and again assume that Aµ(x) has a single plane wave solution

Aµ(x) = εµ(p)eipx.

Then our conditions above imply

p2 = 0 and ε · p = 0.
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where the second one comes from Equation (1.11). There is still some residual gauge freedom,
however, notably

Aµ → Aµ + ∂µω provided ∂2ω = 0.

In momentum space this is

ω(x) = α(p)eipx =⇒ p2 = 0,

then plugging this in above, we have

εµ(p)→ εµ(p) + iα(p)pµ

In other words ε and ε+ iαp are physically equivalent.
Let’s choose a frame where the momentum points in the z direction.

pµ = (E, 0, 0, E)

from which it follows that

ε · p = 0 =⇒ εµ = (0, b, c, 0) + a(1, 0, 0, 1).

Then using our residual gauge freedom we can use

εµ → εµ − a

E
pµ = (0, b, c, 0).

Finally imposing normalisation etc, we get the following basis for the polarisations

εµ± =
1√
2

(0, 1,±i, 0). (1.12)

Let’s make some comments. The polarisation vectors are:

(i) Complex conjugate related: ε+ = (ε−)∗,

(ii) Null: ε+ · ε+ = 0 = ε− · ε−,

(iii) Their inner product is ε+ · ε− = −1.

The key point is the second one because it tells us that our polarisation vectors are null, and
so we can write them in terms of our spinors. We define

εα̇α+ := εµ+(σ̄µ)α̇α = −
√

2
λ̃α̇µα

〈λµ〉

εα̇α− := εµ−(σ̄µ)α̇α =
√

2
µ̃α̇λα

[λ̃µ̃]

(1.13)
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where pα̇α = λ̃α̇λα and qα̇α = µ̃α̇µα is a reference momentum that encodes the residual gauge
symmetry. We will prove this in just a moment. First let’s check that these give us the desired
properties. We have

(ε+)α̇α(ε+)αα̇ ∼ [λ̃λ̃] = 0 and (ε−)α̇α(ε−)αα̇ ∼ 〈λλ〉 = 0,

which is condition (ii).
Next we have

(ε+)α̇α(ε−)αα̇ = −2
[µ̃λ̃]〈µλ〉
〈λµ〉[λ̃µ̃]

= −2.

which seems wrong at first (we want −1 not −2) but then we remember that the −1 condition
comes from the Lorentz expressions. As we see from Equation (1.7) the two are related by a
factor of 2, i.e.

2ε+ · ε− = (ε+)α̇α(ε−)αα̇, (1.14)

and so we get the right-hand side inner product being −1.
We also want to check that our gauge condition ε · p = 0 is preserved. This follows easily

from
εα̇α+ pα̇α ∼ [λ̃λ̃] = 0 and εα̇α− pα̇α ∼ 〈λλ〉 = 0.

Equally we can check the helicity, using Equation (1.3) we can easily obtain

hε± = ±ε±,

which is where the subscript came from in the first place.
Finally we want to show that µ does indeed encode the residual gauge symmetry. We

consider a variation of µ and compute how εs change.

µ→ µ+ aµ+ bλ = (1 + a)µ+ bλ,

where we have used that we can use µ and λ as a basis of two component objects, which is
fine as we have already assumed µ and λ are not proportional. So how does ε change? We
have (using 〈λλ〉 = 0)

(ε+)α̇α → −
√

2
λ̃α̇
(
(1 + a)µα + bλα

)
〈λ, (1 + a)µ+ bλ〉

= −
√

2
λ̃α̇µα

〈λµ〉
−
√

2b

1 + a

λ̃α̇λα

〈λµ〉

= (ε+)α̇α −
√

2b

(1 + a)〈λµ〉
pα̇α,

which is just a residual gauge transformation, i.e. (ε+)α̇α has changed by something propor-
tional to p. A similar calculation will give the (ε−)α̇α result.



2 | Colour-Ordering

As we made clear before starting the calculation, the above results are for abelian gauge
theories, i.e. QED. We obviously now want to ask the question of how this translates to non-
abelian theories in order to study QCD. Indeed QCD will be the main focus of this course, for
the simple reason that we know QCD amplitudes are tedious to calculate from the Feynman
diagram approach (mainly due to the gluon self interactions).

The polarisation story from the QED case before will all follow through, so all we really
need to consider here is the colour part of it. The idea is to split the amplitude into a colour
part and a kinematical part and then just put them together in the end.

2.1 Setting Up The Lagrangian

So how do we do this? Well as always we ‘promote’ our gauge fields Aµ to be matrices

(Aµ)i
j = Aaµ(T a)i

j

where T a are the generators of SU(N) and a ∈ {1, 2, ..., N2−1} is an adjoint index. We shall
use the convention1

Tr
[
T aT b

]
= δab. (2.1)

This allows us to extract the individual Aaµs simply via

Aaµ = Tr[AµT
a]. (2.2)

The commutator of our generators obey

[T a, T b] = i
√

2fabcT c,

where the perhaps unfamiliar
√

2 factor comes from using convention Equation (2.1).
Our Lagrangian now simply becomes2

L = −1

4
Tr[FµνF

µν ]

1Note this is different to the other standard convention Tr
[
T aT b

]
= 1

2
δab. For SU(2) the one used here

corresponds to using T a = 1√
2
σa, where σa are the Pauli matrices, while the other convention uses τa = 1

2
σa.

Similarly for other SU(N)s with the Pauli matrices respectively replaced.
2Note this is actually the same as for the abelian case; in that case there is only one term in the trace so

we don’t need to write it.

11
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with
Fµν = ∂µAν − ∂νAµ −

ig√
2

[Aµ, Aν ]

where we explicitly see the non-ableian term, the commutator. We can write this in terms of
F aµν using the structure constants

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν .

If we introduce the covariant derivative

Dµ = ∂µ −
ig√

2
Aµ

we can write the field strength simply as

Fµν =

√
2i

g
[Dµ, Dν ]

We know that the Lagrangian has the gauge symmetry

Aµ → UAµU
† +

i

g
U(∂µU

†) U ∈ SU(N).

This gives the transformation
Fµν → UFµνU

†

which is easily seen from checking that3

Dµ → UDµU
†.

Remark 2.1.1 . Note that we were careful to say that the Lagrangian is gauge invariant, not the
field strength itself. In other words the field strength is gauge covariant. This is easily checked
using the cyclicity of the trace and U−1 = U † for SU(N). This point is just highlighted
because in the abelian case we had that the field strength itself was gauge invariant.

Next recall that this gauge transformation introduces a redundancy into the system. We
fix this redundancy in the path integral formulation by using the Fadeev-Popov procedure.4

This essentially boils down to adding a new term to the action

L = −1

4
Tr[FµνF

µν ]− 1

2
Tr[GG] + Lghosts,

whereG(x) is a gauge fixing function. The ghost terms we will neglect as we are only concerned
with amplitudes (which only know about external on-shell particles) and so the ghosts never
appear (they only flow through loops).

For the gauge fixing condition we will choose
3Really we shouldn’t say that Dµ transforms in this way but rather that Dµψ → UDµψ where ψ is a field

that transforms as ψ → Uψ. However it is standard to write it like this and the idea is clear.
4See the QFT II course for more details.
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G(x) = ∂µA
µ − ig√

2
AµA

µ (2.3)

this is known as the Gervais-Neveu gauge.

Remark 2.1.2 . Note that if we set g = 0 then we just get a Lorenz gauge result.

The reason we take this choice is because then the Lagrangian simply becomes

L = Tr

[
1

2
Aµ∂

2Aµ − i
√

2g∂µAνAνAµ +
1

4
g2AµAνAµAν

]
.

2.2 Feynman Diagrams In Double Line Notation

We want to get the Feynman rules for this. We shall use a "quick and dirty" way to get them.
We will obtain the Feynman rules in terms of matrix valued expressions. This is different
to what we normally do, where we normally have explicit colour indices. In other words,
normally we obtain Feynman rules for the Aaµs, but here we are going to write them down
for (Aµ)i

j = Aaµ(T a)i
j . We will of course need to keep track of how the matrix indices are

contracted and this will give rise to what are known as ribbon diagrams, which use so-called
double line notation.

We start with the propagator. This is extracted from the kinetic term:5

1

2
(Aµ)i

j∂2(Aµ)j
i =

1

2
(Aµ)i

j∂2(Aν)m
`ηµνδi`δ

m
j ,

where the right hand side just shows the contractions explicitly. We depict this in terms of
the double line diagrams:

p
j

`i
m

µ ν = −iηµνδi`δ
m
j

p2+iε

Let’s clear up any potential confusion on how to construct such a diagram and obtain the
mathematical expression from it.

• This is not two particles propagating but a single propagator. The two lines correspond
to the fact we have 2 As.

• You label the end of each double line with the Lorentz structure, µ/ν

• You label each the end of each line with the matrix indices, i, j etc.

• You join contracted indices with the convention that the arrow points from the lower
index on the δ to the upper index on the δ. This corresponds to pointing from the
upper index on one A to the lower index on the other A. Note this will always result in
adjacent lines pointing in opposite directions.

5Our gluons are massless so we only need this term. That is normally we also consider the mass term when
finding the propagator.
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• You then obtain the mathematical expression from the above with the usual Feynman
rules:

(a) Factor of i from eiS

(b) Minus sign from ∂2 → −p2

(c) Contour argument to get +iε in denominator

Next we look at the three point vertex. We now have to be a bit more careful because more
things are contracted and ordering matters. First let’s write down the term in the Lagrangian
that gives rise to it in matrix form:

−i
√

2 g ∂µ(Aν)k
j(Aν)j

i(Aµ)i
k

Now follow the proscription given above to draw:

n m k`

ji

µ, p ρ, r

ν, q

where we have now labelled the momentum next to the Lorentz index. Mathematically this
diagram corresponds to

i(−i
√

2g)δinδ
m
` δ

k
j

(
(−iqν)ηνρ + cyclic permutations

)
= −i

√
2 g (qµηνρ + rνηρµ + pρηµν)δinδ

k
j δ
m
` ,

where we get the momentum terms from the derivative term.
Finally let’s look at the four point interaction:

1

4
g2(Aµ)j

i(Aν)i
k(Aµ)k

`(Aν)`
j

This is a little nicer because it doesn’t contain a derivative. The diagram is simply

q

i

np

j k
`

m

µ

λ

ν

ρ

= ig2δiqδ
k
j δ

m
` δ

p
nηµρηνλ

Note that there is no factor of 4 from the cyclic permutations.
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2.2.1 Colour-Ordered Amplitudes

We can now compute some amplitudes, and we start with the 3-point amplitude. The idea is
to insert a factor of T a at each vertex and take the trace, this then allows us to extract the
field Aaµ via Equation (2.2). We then also have to include the polarisation vector, so in total
we have:

a1, p1, ε1

a3, p3, ε3 a2, p2, ε2

=

n m k`

ji

µ ρ

ν
(T a1)i

jεν1

(T a2)k
`ερ2(T a3)m

nεµ3

+ perms of (1, 2, 3)

We can then use this to obtain

iT3 = −i
√

2gTr[T a1T a2T a3 ]
(
ε1 · ε2p1 · ε3 + ε2 · ε3p2 · ε1 + ε3 · ε1p3 · ε2

)
+ (2↔ 3),

where the second part is to account for the non-cyclic permutations; the cyclic permutations
are already taken care of in our Feynman rules.

We did this calculation for the 3-point vertex, but the claim is that more generally, using
the double line notation, we see that all tree-level amplitudes can be written as

iTn = gn−2
∑

non-cyclic
perms

Tr[T a1 ...T an ]A(1, ..., n) (2.4)

where the A(1, ..., n) is a purely kinematical thing known as the colour ordered amplitude
and is sum over all diagrams with a fixed cyclic ordering of the gluons and no crossed lines.
The colour ordered amplitude knows nothing about the group theoretic piece (i.e. the colour
structure), which is all in the trace. The sum, which is over non-cyclic permutations, can be
expressed as the sum over permutations of legs 2, ..., n holding leg 1 fixed.

This is not a trivial result so let’s summarise the main points:

(i) We can reduce the calculation of an n-point tree level amplitude to the calculation
of colour-ordered amplitudes. We then get the full amplitude by "colour-dressing":
multiply by a cyclically ordered colour factor (the trace) and sum over non-cyclic per-
mutations.

(ii) The colour ordered amplitudes are cyclically symmetric,

A(1, 2, ..., n) = A(2, ..., n, 1),

which can be seen from the fact that the trace is cyclically symmetric.

(iii) We compute the colour ordered amplitudes using our double line notation Feynman
rules derived before. We state these colour ordered Feynman rules in the next table.



CHAPTER 2. COLOUR-ORDERING 16

Name Diagram Math Expression

Propagator p
µ ν − iηµν

p2 + iε

3-Point Vertex

µ1, p1

µ3, p3 µ2, p2

−i
√

2
(
ηµ1µ2pµ31

+ηµ2µ3pµ12

+ηµ3µ1pµ23

)

4-Point Vertex

µ1 µ2

µ3µ4

iηµ1µ3ηµ2µ4

Note we have dropped the factors of g and the δs. We are no longer using double line
notation, since colour ordered amplitudes do not contain information about colour. It is
understood that these vertices will be used to construct diagrams with fixed cyclic ordering
of external legs and no crossed lines.



3 | n-Point Amplitudes

So far we have derived two very powerful techniques: the spinor-helicity formalism and colour-
ordering. We now want to put these two techniques together in order to compute some
amplitudes.

3.1 3-Point Amplitudes

We start by considering 3-point amplitudes as these are the most simple and give hints at how
to extend to higher point amplitudes. The first thing we note is that for 3-point amplitudes
all kinematical invariants vanish. We see this simply from

p1 + p2 + p3 = 0 =⇒ 2p1 · p2 = (p1 + p2)2 = p2
3 = 0,

and similarly p1 · p3 = 0 = p2 · p3. If we convert this into spinor formalism, it becomes

0 = (pi + pj)
2 = −〈ij〉[ij]. (3.1)

Next we recall that if we have real momenta we require 〈ij〉 = −[ij]∗, and so the only way we
can satisfy the above relation is if all spinor inner products vanish. It follows from this that
we cannot define any non-trivial amplitudes. Ah... that’s not so good.

So what do we do? Well the above followed directly from us imposing that the momenta
are real, so we could ask the question "what if they’re complex?" As we said before, in this
λα and λ̃α̇ are independent and so the two inner products are independent. This means we
could satisfy Equation (3.1) by setting either 〈ij〉 = 0 or [ij] = 0, with the other not needing
to vanish. This is exactly what we are going to do.

Before moving on it is worth keeping in mind that this complex momenta condition comes
from complexifying our spacetime and so is unphysical. Therefore the results we obtain here
do not represent good physics (they will all vanish when we impose reality conditions), however
they are worth pursuing as they give nice mathematical insight.

The first thing we do is to express our momentum conservation in terms of spinors. Using
pi = λiλ̃i we have

λ1λ̃1 + λ2λ̃2 + λ3λ̃3 = 0.

Next let’s contract with λ1, using 〈11〉 = 0, we are left with

〈12〉λ̃2 + 〈13〉λ̃3 = 0.

If we then assume that 〈12〉 6= 0, we obtain

λ̃2 =
〈13〉
〈12〉

λ̃3.

17
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Similarly if we had contracted with λ2 we would obtain

λ̃1 =
〈23〉
〈21〉

λ̃3,

and so in total we have
λ̃1 ∝ λ̃2 ∝ λ̃3,

but if this is the case then we have
[ij] ∝ [ii] = 0

and so all square bracket inner products vanish. That is

[12] = [13] = [23] = 0.

Similarly if we had taking contractions with the tilded λ̃s and assumed that the square bracket
inner products were non-vanishing we would obtain

〈12〉 = 〈13〉 = 〈23〉 = 0.

So we have that all 3-point amplitudes only depend on 〈ij〉 or only depend on [12]. Note this
result is more restrictive then Equation (3.1) itself, as this is satisfied with

〈12〉 = [23] = [13] = 0,

and so the 3-point amplitude would depend on [12], 〈23〉 and 〈13〉.

Remark 3.1.1 . The above result, that the 3-point amplitude only depends on 〈ij〉 or [ij], turns
out to be equivalent to saying that they are holomorphic or antiholomorphic, respectively.

Ok let’s compute the 3-point amplitudes explicitly. From our colour ordered Feynman
rules, we have

A({pi, εi}) =

ε1, p1

ε3, p3 ε2, p2

=
√
2
[
(ε1 · ε2)(ε3 · p1) + (ε2 · ε3)(ε1 · p2) + (ε3 · ε1)(ε2 · p3)

]

where we have
iT3 = −ig3−2A = −igA.

We now want to simplify this. We do this by first considering the case where all the gluons
have the same helicity. W.l.o.g. let’s take them to all be +. Then from Equation (1.13) we
have

ε+(pi, qi) · ε+(pj , qj) = 2
〈qiqj〉[pjpi]
〈qipi〉〈qjpj〉
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where1 pα̇αi = λ̃α̇i λ
α
i are the momenta and qα̇αi = µ̃α̇i µ

α
i are the reference momenta encoding

the gauge invariance. The inner products in the above are meant to be understood as the
relative parts, i.e.

〈qiqj〉 = µαi µjα and [pjpi] = λ̃jα̇λ̃
α̇
i ,

etc. Now if we choose q1 = q2 = q3 then 〈qiqj〉 = 0 and so the above vanishes. A similar
calculation shows that

ε−(pi, qi) · ε−(pj , qj) = 0.

We summarise this below:

A(±±±) = 0, (3.2)

where hopefully the notation is clear.

3.1.1 MHV & MHV

Ok so what if only one polarisation is different? That is consider A(1−2−3+), which is the
3-point minimal helicity violating (MHV) amplitude. Well from above we have

A(1−, 2−, 3+) =
√

2
[
(ε−1 · ε

−
2 )(ε+3 · p1) + (ε−2 · ε

+
3 )(ε−1 · p2) + (ε+3 · ε

−
1 )(ε−2 · p3)

]
, (3.3)

Next, we have2

ε−i · ε
−
j =

[qiqj ]〈pjpi〉
[qipi][qjpj ]

ε+i · ε
−
j =

[piqj ]〈qipj〉
〈qipi〉[qjpj ]

ε+i · pj =
[pjpi]〈qipj〉√

2〈qipi〉

ε−i · pj =
[qipj ]〈pipj〉√

2[qipi]

(3.4)

where we have used the fact that when going from Lorentz contractions (which the · represents)
to spinor contractions we get a factor of 1/2, as in Equation (1.14). We can then express our
3-point MHV amplitude in terms of spinor inner products. Again the qα̇αi = µ̃α̇µα are our
reference momenta. If we pick

µ̃1 = µ̃2 and µ3 = λ1

then we have
[q1q2] = 0 and 〈q3p1〉 = 0.

From this only the middle term in Equation (3.3) survives:

A(1−, 2−, 3+) =
〈q32〉[3q2]

〈q33〉[q22]

[q12]〈21〉
[1q1]

,

1Again here i labels the gluon we’re considering, not a spatial index.
2Note on the minus sign in the ε+i · ε

−
j expression is taken care of by swapping [qjpi] = −[piqj ]. Similarly

for the ε+i · pj with [pjpi] = −[pipj ].
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where we have used a notation where just a number means p, i.e. 〈q32〉 = 〈q3p2〉. Then we
use our reference momenta definitions to replace

〈q32〉 −→ 〈12〉
〈q33〉 −→ 〈13〉
[q12] −→ [q22]

[1q1] −→ [1q2],

to obtain

A(1−, 2−, 3+) = −〈12〉2

〈13〉
[3q2]

[1q2]

where we have also used 〈21〉 = −〈12〉.
This is nice, but really we want to remove the reference momenta from the expression.

We do this by considering momentum conservation

λ̃1λ1 + λ̃2λ2 + λ̃3λ3 = 0,

which if we contract with µ̃2λ2 we get

〈21〉[1q2] + 〈23〉[3q2] = 0 =⇒ [3q2]

[1q2]
=
〈12〉
〈23〉

. (3.5)

Putting this all together we get

A(1−, 2−, 3+) =
〈12〉4

〈12〉〈23〉〈31〉
, with λ̃1 ∝ λ̃2 ∝ λ̃3, (3.6)

where we have multiplied denominator and numerator by 〈12〉 to get a more symmetric looking
denominator. Similarly we can calculate the anti-MHV (or MHV) expression

A(1+, 2+, 3−) = − [12]4

[12][23][31]
, with λ1 ∝ λ2 ∝ λ3. (3.7)

Let’s make a couple comments:

• We now note that we only set µ̃1 = µ̃2 but didn’t say how they were related to the
λ̃is. Now if we set µ̃2 = λ̃3 then we would have [3q2] = 0 and so the numerator
in Equation (3.5) would vanish, which in turn suggest that Equation (3.6) vanishes.
However we then note that we already have µ̃1 = µ̃2 and so we must also have µ̃1 =
λ̃3 ∝ λ̃1, and so [1q2] = 0. This is the denominator of Equation (3.5), and so we just
get 0

0 , which is ill-defined.

• For real momenta we know all our inner products vanish and so our amplitudes simply
become

A(1−, 2−, 3+) =
04

03
= 0 and A(1+, 2+, 3−) = −04

03
= 0,

so both amplitudes vanish, which is what we needed. That is we only get non-vanishing
3-point amplitude for complex momenta.
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• We can actually obtain the form of Equation (3.3) from helicity arguments. We have

h1A(1−, 2−, 3+) = h2A(1−, 2−, 3+) = −A(1−, 2−, 3+), and
h3A(1−, 2−, 3+) = +A(1−, 2−, 3+),

where
hi =

1

2

(
− λαi

∂

∂λαi
+ λ̃α̇i

∂

∂λ̃α̇i

)
.

If we then use the ansantz

A(1−, 2−, 3+) = 〈12〉X〈23〉Y 〈31〉Z

then act with the helicity operators and compare with the above we get the following
simultaneous equations

−1

2
(X + Z) = −1 − 1

2
(X + Y ) = −1 and − 1

2
(Y + Z) = 1

which solves to give us
X = 3 and Y = Z = −1,

which gives us Equation (3.6). Of course we only really know this is correct up to a
normalisation. We could then ask "why didn’t we consider the ansatz A(1−2−3+) =
[12]X [23]Y [31]Z?" The answer is if we do a similar calculation for this we can show that
the result violates locality so must be excluded.3

This result is particularly nice because it allows to extend the above result to a MHV
3-point amplitude of particles of spin-s as

A(1−, 2−, 3+) =

(
〈12〉4

〈12〉〈23〉〈31〉

)s
.

• Using the cyclicity of the colour-ordered amplitudes, we have

A(1−, 2+, 3−) = A(3−, 1−, 2+) =
〈13〉4

〈12〉〈23〉〈31〉

A(1+, 2−, 3−) = A(2−, 3−, 1+) =
〈23〉4

〈12〉〈23〉〈31〉

Exercise

Convince yourself that the 3-point MHV amplitude is totally antisymmetric under
exchange of particle labels. That is show that

A(2−, 1−, 3+) = −A(1−, 2−, 3+) and A(3+, 2−, 1−) = −A(1−, 2−, 3+).

Hint: This can be shown either using the cyclicity properties above or via the explicit
expression in terms of polarisation and momenta.

3This is a problem on the worksheets, so I will not type the answer here.
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3.2 n-Point Amplitudes: Parke-Taylor Formula

Now it might seem a bit strange that we are finding the 3-point amplitudes, given that we
have shown that all physical (i.e. real momenta) 3-point amplitudes must vanish. Well,
remarkably, the formula for the 3-point MHV amplitudes has simple generalisation to any
n-point amplitude, known as the Parke-Taylor formula:

A(1+, 2+, ..., i−, ..., j−, ..., n+) =
〈ij〉4

〈12〉〈23〉...〈(n− 1)n〉〈n1〉
(3.8)

and

A(1−, 2−, ..., i+, ..., j+, ..., n−) = − [ij]4

[12][23]...[(n− 1)n][n1]
(3.9)

with the λ̃1 ∝ λ̃2 etc conditions applied as with Equations (3.6) and (3.7).

Remark 3.2.1 . Note that in the Parke-Taylor formulas we have two of the polarisations being
different, rather then just one (as in Equation (3.11)). Of course for the 3-point amplitude
these two cases coincide (as 3− 2 = 1). This remark is included just to clarify what is meant
by MHV/MHV: two polarisations differ from the rest.

The Parke-Taylor formulas are the MHV and MHV expressions, but for the 3-point am-
plitudes we also showed that A(± ± ±) = 0, so the natural question is "does this hold for
higher point amplitudes?"

Claim 3.2.2 . Yes, it does hold. That is

A(±± ...±) = 0. (3.10)

In order to prove the above claim, we need to introduce the following Lemma.

Lemma 3.2.3. A tree-level n-point diagram can have, at most, (n− 2) 3-point vertices.

Exercise

Prove Lemma 3.2.3. Hint: Prove it inductively.

Proof. (Of Claim 3.2.2). Note that

(i) A gluon amplitude can be expressed as a sum of Feynman diagrams with a polarisation
vector associated to each external leg.

(ii) Since the amplitude is a Lorentz scalar, each polarisation vector must be contracted
with either another polarisation vector or an external momentum.

(iii) If it is contracted to an external momentum, it must be through a 3-point vertex as the
4-point vertex doesn’t involve momenta.
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(iv) By Lemma 3.2.3, there are at most (n− 2) 3-point vertices, each of which could poten-
tially contract an external polarisation vector with an external momentum. Therefore
in each diagram we must have at least two polarisation vectors which aren’t contracted
with an external momentum, and so must be contracted with each other.

(v) Recall that if we pick the reference momenta qi = qj then ε±i · ε
±
j = 0. Hence if they

all have the same helicity, as in Equation (3.10), we can pick the reference momenta
such that εi · εj = 0 for all {i, j}, and since each diagram contains at least one such
contraction the amplitude must vanish.

We now return to what we were trying to say in Remark 3.2.1; using similar arguments
to the above proof we can show that

A(∓±±...±) = 0 ∀n > 3. (3.11)

In particular, setting qi = p1 for all i > 1 ensures that all inner products of polarisation
vectors vanish: from Equation (3.4) we see

ε±i · ε
±
j = 0 ∀i, j > 1 since qi = qj

and
ε±i · ε

∓
1 = 0 ∀i > 1 since qi = p1.

Remark 3.2.4 . Recall that for real momenta Equation (3.11) also holds for n = 3, but for
complex momenta setting qi = p1 for all i > 1 generally results in 0/0 for 3-point kinematics.
In this case we can define non-trivial 3-point MHV/MHV amplitudes.

Hopefully now Remark 3.2.1 is more clear, and we summarise it in the following definition.

Definition. [Maximal Helicity Violating] An amplitude is said to be maximal helicity
violating (MHV)4 if exactly two of the helicities differ from the rest.

MHV gets its name from the fact that it corresponds to the biggest change of helicity
from incoming to outgoing. This might not seem obvious at first but we have to remember
that we take all of our particles to be outgoing and that switching them to incoming flips the
helicity. So A(−,−,+,+, ...,+) corresponds to n outgoing particles with 2 negative helicities
and (n− 2) positive ones. If we change m < (n− 2) of the positive helicity particles to be our
incoming ones, we get a situation where we have m negative helicity incoming particles going
to 2 negative helicity and (n− 2−m) positive ones. If we considered A(−,−,−,+, ...,+) we
would end up with m negative to 3 negative and (n− 3−m) positive, so the total change in
helicity is less. The case with 3 differing helicities is known as NMHV, where the "N" stands
for "next". Similarly A(−,−,−,−,+, ...,+) is called NNMHV, or more simply N2MHV. In
general

A(1−, 2−, ..., k−, (k + 1)+, ..., n+) is Nk−2MHV.
4Of course we have used a convention to distinguish MHV from MHV, but hopefully that is clear by now.
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Hopefully this explanation is clear, and in order to help, we depict the idea diagrammati-
cally below: the left-hand diagram is MHV while the right-hand side is NMHV.

−
−

+

+
+

. . .

−
−

−
−
−

. . .

Incoming

Outgoing

−
−
−

+
+

. . .

−
−

−
−
−

. . .

Incoming

Outgoing

Remark 3.2.5 . As we mentioned in the footnote above, of course we have picked a convention
for what we mean by MHV vs MHV, and hopefully it is easy to see what the latter corresponds
to diagrammatically.

3.3 4-Point MHV

Let’s now compute the 4-point MHV colour-ordered amplitude A4(1−, 2−, 3+, 4+). Recall
that this is computed by summing over colour-ordered Feynman diagrams with a fixed cyclic
ordering and no cross legs:5

p

2−

1−

3+

4+

+ p

1− 4+

3+2−

+

4+1−

2− 3+

Now recall that the full amplitude is then obtained by dressing A4(1−, 2−, 3+, 4+) with the
trace Tr[T a1T a2T a3T a4 ] and summing over non-cyclic permutations of external legs. Hence,
although the colour-ordered amplitude only has 3 diagrams, the full amplitude has 3×3! = 18
diagrams. This is already a massive simplification, but we can actually further simplify this
by a clever choice of reference vectors for the external gluons:

q1 = q2 = p3 and q3 = q4 = p2, (3.12)

then all polarisation products vanish expect for

ε−1 · ε
+
4 =

〈q41〉[4q1]

〈q44〉[q11]
=
〈21〉[43]

〈24〉[31]
. (3.13)

5Note that we take all momenta to flow outwards, as per our convention that we have outgoing particles.
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Then the third diagram (the 4-point diagram) vanishes as it is given by

i(ε−1 · ε
+
3 )(ε−2 · ε

+
4 ) = 0.

Now consider the t-channel type diagram and look at the bottom 3-point vertex

iV µ
23p =

p, µ

2− 3+

This is given by6

iV µ
23p = −i

√
2
[
(ε2 · ε3)pµ2 + εµ3 (p3 · ε2) + εµ2 (p · ε3)

]
= −i

√
2
[
εµ3 (q2 · ε2) + εµ2 (−p2 · ε3 − p3 · ε3)

]
= −i

√
2
[
ε3(−q3 · ε3)

]
= 0,

where we have used our reference momenta choice, Equation (3.12), p = −p2 − p3 and

ε2 · ε3 = q2 · ε2 = q3 · ε3 = p3 · ε3 = 0.

So the second diagram also vanishes and we only need to consider the first one! Using the
colour-ordered Feynman rules, we are then just left with

A4(1−, 2−, 3+, 4+) = iV µ
12piV

ν
34−p
−iηµν
p2

.

We then just need to compute the vertex contributions:

iV µ
12p = −i

√
2
[
(ε1 · ε2)pµ1 + εµ2 (p2 · ε1) + εµ1 (p · ε2)

]
= −i

√
2
[
εµ2 (p2 · ε1) + εµ1 (p · ε2)

]
iV ν

34−p = −i
√

2
[
(ε3 · ε4)pν3 + εν4(p4 · ε3)− εν3(p · ε4)

]
= −i

√
2
[
εν4(p4 · ε3)− εν3(p · ε4)

]
,

where again we have used ε1 · ε2 = 0 = ε3 · ε4. Now when we do the ηµν contraction, and
recall that with our reference momenta, the only non-vanishing contraction is ε1 · ε4 we see
that only one term survives and we have

A4(1−, 2−, 3+, 4+) = 2
(p · ε2)(p4 · ε3)(ε1 · ε4)

p2
.

We now want to express this in terms of our spinor inner products. Firstly, we have

p2 = (p1 + p2)2 = −〈12〉[12].

Next we have
p · ε2 = −p1 · ε2 − p2 · ε2 = −p1 · ε2,

6We leave the ± symbols on the polarisations implicit, they can easily be read off from the diagram.
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and so using7

p1 · ε−2 =
[q21]〈12〉√

2[2q2]
=

[31]〈12〉√
2[23]

p4 · ε+3 =
〈q34〉[43]√

2〈q33〉
=
〈24〉[43]√

2〈23〉
.

Putting these together with Equation (3.13), we have

A4(1−, 2−, 3+, 4+) =
1

〈12〉[12]

[31]〈12〉
[23]

〈24〉[43]

〈23〉
〈21〉[43]

〈24〉[31]
=
〈21〉[43]2

[12][23]〈23〉
.

This is not so nice, and seems to be in contrast with our Parke-Taylor result, Equa-
tion (3.8).8 How do we make it nicer? Well we can cheat a bit by using that we want it to
obey Equation (3.8), so we know we need to remove the all the square inner products and we
want 〈12〉4 in the numerator.

So how do we achieve this? Well first we note that momentum conservation gives us

〈34〉[43] = (p3 + p4)2 = (p1 + p2)2 = 〈21〉[12],

so if we multiply and divide by 〈34〉, we get (using 〈21〉2 = 〈12〉2)

A4(1−, 2−, 3+, 4+) =
〈12〉2[43]

[23]〈23〉〈34〉
.

We now need to remove the other [43] and the [23] in the denominator. The trick to note
in order to do this is the content of the next exercise.

Exercise

Using momentum conservation, p1 + p2 = p3 + p4, show that

[43]〈41〉 = −[23]〈21〉.

Using the result from this exercise, we can multiply and divide by 〈41〉 to obtain

A4(1−, 2−, 3+, 4+) =
〈12〉3

〈23〉〈34〉〈41〉
=

〈12〉4

〈12〉〈23〉〈34〉〈41〉
, (3.14)

which agrees exactly with the Parke-Taylor formula.

3.4 Photon-Decoupling Identity & Schowten Identity

Great, we have shown that the Parke-Taylor formula holds for the 4-point amplitude by ex-
plicitly calculating A(1−, 2−, 3+, 4+). We saw it was quite a lot of work in order to obtain this,
so it would be extremely useful if we could relate this result to other MHV 4-point amplitudes.
That is, we want to use the result above to write down the result for A4(1−, 2+, 3−, 4+).

Again, if we accept the Parke-Taylor identity as true, this is trivial — simply change the
values for i, j in Equation (3.8) — however we want to show that this holds explicitly. In
order to do that, we introduce the photon-decoupling identity

7Putting the helicity labels back on for clarity of where the right-hand sides come from.
8Of course what we are trying to do here is demonstrate that the Parke-Taylor formula holds at least for

the 4-point MHV.
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A(1, 2, 3, ..., n) +A(2, 1, 3, ..., n) +A(2, 3, 1, ..., n) + ...+A(2, 3, ..., n, 1) = 0, (3.15)

which can be remembered using the mnemonic "migrate the 1 through".

Exercise

Prove Equation (3.15). Hint: Use the fact that pure gluon tree amplitudes can be
expressed in the following colour-decomposed form

An = gn−2
∑

non-cyclic
perms

Tr[T a1 ...T an ]A(1, ..., n),

and then let T a1 = 1.

Remark 3.4.1 . The above exercise is one set on the course so I don’t want to expand on the
proof any further, but this remark is included to maybe clear up some potential confusion.
Setting T a1 to be the identity corresponds to making one of the gluons into a photon, which
is why Equation (3.15) vanishes: photons and gluons do not couple. This is where the name
"photon-decoupling" comes from. Now it might seem strange to then say that the result must
also hold when all the particles are gluons (i.e. there is no photon), but what we have to
notice is that Equation (3.15) is expressed in terms of the colour-ordered amplitudes, which
know nothing about the colour structure. That is the A(1, ..., n) have no way of knowing if
the entries are photons or gluons.

Ok so using the photon-decoupling identity we have

A(1−, 2+, 3−, 4+) = −A(1−, 2+, 4+, 3−)−A(1−, 4+, 2+, 3−)

= −A(3−, 1−, 2+, 4+)−A(3−, 1−, 4+, 2+, 3−)

= −
(

〈13〉4

〈12〉〈24〉〈43〉〈31〉
+

〈13〉4

〈14〉〈42〉〈23〉〈31〉

)
=
〈13〉3

〈24〉

(
1

〈12〉〈43〉
− 1

〈14〉〈23〉

)
=
〈13〉3

〈24〉

(
〈14〉〈23〉 − 〈12〉〈43〉
〈12〉〈43〉〈14〉〈23〉

)
=
〈13〉3

〈24〉

(
〈14〉〈23〉+ 〈12〉〈34〉
〈12〉〈43〉〈14〉〈23〉

)
where the second line follows from the cyclicity of the colour-ordered amplitudes and then we
have used our result from above.

This isn’t quite what we want and it’s not obvious at this point how to make it more
Parke-Taylor-like. Indeed we now need another, very useful, identity known as the Schowten
identity
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〈ij〉λk + 〈jk〉λi + 〈ki〉λj = 0. (3.16)

Exercise

Prove the Schowten identity, Equation (3.16). Hint: Note that the λs are 2-component
objects, so can think of λi and λj as a basis for λk.a

aAgain this is a exercise on the course, and I can’t add much more of a hint without writing the
answer. If any readers are still confused, feel free to drop me an email.

Using the Schowten identity, we have

〈14〉〈23〉+ 〈12〉〈34〉 = −〈13〉〈42〉 = 〈13〉〈24〉,

which if we plug in to the expression above gives us

A(1−, 2+, 3−, 4+) =
〈13〉4

〈12〉〈23〉〈34〉〈41〉
,

which is in agreement with the Parke-Taylor identity.
So we have managed to prove the Parke-Taylor identity for n = 3 and n = 4. Of course

this does not prove the Parke-Taylor identity in general. For higher n-point functions using
Feynman diagrams is not feasible. We now move on to prove a recursion relation that will
allow us to prove the Parke-Taylor formula inductively.



4 | BCFW Recursion

As we just said, we now want to obtain some kind of recursive relation that will allow us
to compute higher order amplitudes. As the name of this chapter suggests, such a recursive
relation is known as the Britto–Cachazo–Feng–Witten (BCGW) recursion relation.

So we want to compute a tree-level n-point amplitude An. The method to do this seems
slightly strange at first, but hopefully will be clear as we move forward. The idea is to deform
legs 1 and n in such a way that preserves momentum conservation, namely

p1 → p̂1(z) := p1 − zq
pn → p̂n(z) := pn + zq

(4.1)

where z ∈ C and q is some other momentum (i.e. it is a four component object that we can
contract with the other momenta pi). It’s clear that we can preserved momentum conservation
as p̂1 + p̂n = p1 + pn. Now if we want to require p̂2

1 = 0 = p̂2
n (i.e. they are on-shell momenta)

then we must impose
q2 = q · p1 = q · pn = 0. (4.2)

The next important thing to note is that, because z ∈ C, the momenta are complex and so
we get non-trivial 3-point amplitudes. This is important as, as we will see, all higher point
amplitudes are made up from the 3-point amplitude (i.e. we have a recursion relation).

Doing the deformation Equation (4.1), we obtain the deformed amplitude Ân(z). The
question we now want to ask is "what are its analytical properties?" It is the sum of deformed
Feynman diagrams, and so it is a rational function1 of z. Moreover, Ân(z = 0) = An only
has poles when denominators of Feynman propagators become zero, i.e. the virtual exchange
particles go on-shell. It follows from this that Â(z) only has poles at values of z for which the
deformed propagators go on-shell. Near such poles, the amplitude factorises into a product
of two on-shell deformed amplitudes, which we denote ÂL(zi) and ÂR(zi) (for "left" and
"right"). We depict the idea diagrammatically, in order to try help further explain why this
is the case.

1A function f(x) is said to be rational if it can be written in the form f(x) = P (x)
Q(x)

, where P (x) and Q(x)

are polynomials in x, with Q(x) not being the zero function.

29
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lim
z → zi

n̂

5

4

3

2

1̂

...Ân(z) =

1̂

2

3

i− 1

. .
.

ÂL(zi)

n̂

n− 1

n− 2

i

. . .

ÂR(zi)
P̂i(z)

where
P̂i(z) := (p̂1 + p2 + ...+ pi−1) = Pi − zq (4.3)

where we have also defined

Pi :=

i−1∑
j=1

pj .

It is important to note the notation used: the subscript on the capital P̂i/Pi tells us where the
sum ends, it is not the momentum of the i-th leg, which is lowercase pi. P̂i is the momentum
of the deformed propagator. This is hopefully clear from the sum expression for Pi. We will
clarify what zi is in a moment.

Remark 4.0.1 . We should clarify that i ∈ {3, ..., n−1},2 and so the labelling on the right-hand
diagram is simply illustrative (i.e. the leg 3 could actually belong to ÂR(zi), for example).

Ok so why does having our deformed propagator cause the amplitude to split? Well the
pedagogical answer goes as follows: when the deformed propagator goes on shell it essentially
behaves like an external particle, and so we can view it as such. However it is not actually
external (it is not asymptotically free), but instead it connects two other amplitudes with
genuine on-shell external legs. In other words we can almost imagine process ÂR(zi) happen-
ing, with P̂i(z) being an external particle. This particle then becomes an incoming particle
in the, otherwise completely separate, amplitude ÂL(zi).

It is hopefully clear that we must view P̂i(z) as an outgoing particle for one amplitude
and ingoing for the other, otherwise we would break momentum conservation. Similarly it
follows that 1̂ and n̂ must be in different subamplitudes (as in the diagram above), as if they
appeared in the same subamplitude, the propagator will not be deformed and therefore will
not pick up a pole (i.e. will not become "like an external particle").

With the idea hopefully cleared up, let’s now look at this in a bit more detail. Squaring
Equation (4.3), we get

P̂ 2
i (z) = P 2

i − 2zPi · q = −2Pi · q
(
z − P 2

i

2Pi · q

)
.

Now we want P̂ 2
i (z = zi) = 0 — i.e. it goes on-shell at z = zi — and so we can conclude that

2As otherwise either ÂL(zi) or ÂR(zi) only contains one particle and so is not a proper amplitude
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zi :=
P 2
i

2Pi · q
(4.4)

For colour-ordered amplitudes Pi is always given by the sum of adjacent momenta as
written above, but more generally P̂i just corresponds to the sum of external momenta in ÂL.
This is just the statement of momentum conservation: we have P̂i in and the sum p̂1+...+pi−1

out.
Ok let’s look at the subamplitudes in a bit more detail. For each factorisation we must

actually sum over all on-shell states propagating between ÂR and ÂL. For gluons this corre-
sponds to a sum over helicities, s, which follows from

ηµν = −
∑
s=±1

εµs ε
ν
−s.

So we are left with

lim
z→zi

Ân(z) =
1

z − zi

(
− 1

2Pi · q

) ∑
s=±1

ÂL
(
1̂(zi), 2, ..., i− 1,−P̂i(zi)−s

)
× ÂR

(
+ P̂i(zi)

s, i, ..., n− 1,−n̂(zi)
)
,

(4.5)

where we have used
1

P̂ 2
i

=
1

z − zi

(
− 1

2Pi · q

)
.

Also note that P̂i appears in ÂL with a minus sign as it is ingoing there and our convention is
that all particles are outgoing. For the same reason we put it to the power −s, as we flip the
helicity when we go from outgoing to incoming. Similarly P̂i appears in ÂR with a positive
sign and a positive power of s.

In summary, after deforming the amplitude, the residues of the poles correspond to prod-
ucts of lower point amplitudes, the ÂL and ÂR. By summing over all residues, we can then
reconstruct the deformed amplitude from lower-point amplitudes. The original amplitude is
then obtain by setting z = 0. This can be proven using Cauchy’s theorem. In particular
suppose that

lim
z→∞

Ân(z) = 0, (4.6)

then the following contour integral vanishes∮
z=∞

dz

2πi

Ân(z)

z
= 0,

where the limit on the integration means we take the contour over an infinite radius circle
centered around the origin of the complex z plane. Alternatively, we could define w := 1/z
and then take the contour around a small circle around the origin w = 0, and the integral
simply implies that Ân(w = 0) = 0.

Why is this useful? Well Equation (4.5) tells us that the contour integral also corresponds
to the sum over residues of poles inside the contour, notably z = 0, and the poles where Ân(z)
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factorises into lower-point amplitudes:

0 = Ân(z = 0) +
n−1∑
i=3

1

zi

(
− 1

2Pi · q

) ∑
s=±1

Â−sL (zi)Â
s
r(zi),

where the sum over i accounts for the different factorisation channels (i.e. the different
distribution of the legs between ÂL and ÂR). Then using Equation (4.4) and Ân(z = 0) = An,
we finally conclude

An =

n−1∑
i=3

∑
s=±1

Â−sL (zi)
1

P 2
i

ÂsR(zi). (4.7)

This is the BCFW recursion relation and it tells us that the undeformed amplitude can be
computed by summing over products of deformed lower point on-shell amplitudes times un-
deformed propagators. The deformation parameter of each term corresponds to the value of
z for which the deformed propagator goes on-shell. In this way we can recursively compute
higher point amplitudes from lower point amplitudes. Note that although the 3-point ampli-
tude is unphysical itself (it vanishes when we impose our real momenta condition), it is the
building block for all higher point amplitudes. In other words, the BCFW relation allows us
to compute the entire S-matrix given only the 3-point amplitude.

4.1 Comments On Generality Of BCFW

Although we have focused on colour ordered Yang-Mills amplitudes (i.e. gluons), the BCFW
recursion relation can be applied much more generally. Indeed note that the only assumptions
we have made is the existence of a Feynman diagram expansion and Equation (4.6). This
means that, in particular, the BCFW recursion relation can be applied to gravity! This
is particularly powerful as the Einstein-Hilbert action has an infinite number of Feynman
vertices,3 which makes standard Feynman diagram calculations very complicated. Using the
BCFW recursion relation only the 3-point amplitude needs to be known, and this can be
deduced from little-group scaling and locality (as we did above). This last point is very
important as it tells us we don’t even need to know the Lagrangian of the theory!

Furthermore, the BCFW recursion relation holds in any spacetime dimension d ≥ 4. In
these lectures we have of course focused on d = 4, as here we can use our spinor techniques.
In particular we can define the deformation as follows:

λ1 → λ̂1 := λ1 − zλn and λ̃n →
̂̃
λn := λ̃n + zλ̃1,

so that

p̂α̇α1 (z) =
̂̃
λ
α̇

1 λ̂
α
1 = λ̃α̇1 (λ1 − zλn)α = pα̇α1 − zλ̃α̇1λαn, and

p̂α̇αn (z) =
̂̃
λ
α̇

nλ̂
α
n = (λ̃n + zλ̃1)α̇λαn = pα̇αn + zλ̃α̇1λ

α
n,

3See the effective field theory section of QFT II to see why.
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so if we define
qα̇α := λ̃α̇1λ

α
n,

we have
p̂1 = p1 − zq and p̂n = pn + zq,

which is exactly our deformation, Equation (4.1). We call this deformation a "〈1n] shift".
Given this deformation, under what circumstances does Equation (4.6) hold? To see this,

consider deforming the 4-point MHV amplitude A4(1−, 2−, 3+, 4+). Suppose we do a 〈1−2−]
shift, then from Equation (3.14) we have

Â−−4 =
〈1̂2̂〉3

〈2̂3〉〈34〉〈41̂〉
,

where the superscript is meant to indicate we are defomring the negative helicity particles.
Now note that

〈1̂2̂〉 =
(
〈1| − z 〈2|

)
|2〉 = 〈12〉

where we have used 〈22〉 = 0. Similarly we have

〈41̂〉 = 〈41〉 − z〈42〉.

Then using that 2̂ only effects the tilded λ̃2 and that the angular 〈ij〉 is the inner product
w.r.t. untilded λi and λj we have 〈2̂3〉 = 〈23〉. So in total we have

Â−−4 ∼ 1

z
,

which vanishes in the limit z →∞, and so Equation (4.6) is obeyed.
Similarly a 〈3+4+] shift will result in

Â++
4 ∼ 1

z
,

and a 〈4+1−] shift gives

Â+−
4 ∼ 1

z
.

However if we consider a 〈1−4+] shift then we have

Â−+
4 =

〈1̂2〉3

〈23〉〈34̂〉〈4̂1̂〉

and
〈1̂2〉 = 〈12〉 − z〈42〉, 〈34̂〉 = 〈34〉 and 〈1̂4̂〉 = 〈14〉,

so in total
A−+

4 ∼ z3,

which obviously doesn’t obey Equation (4.6).
Hence we see that the BCFW recursion relation applies for 〈−−], 〈++] and 〈+−] shifts

but not for a 〈−+] shift. Although we have only showed this for n = 4, it turns out this result
holds for any n and any MHV degree.4

4For a proof see arXiv:0801.2385.

https://arxiv.org/pdf/0801.2385.pdf
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4.2 Inductive Proof Of Parke-Taylor Formula

As we said at the end of the last chapter, our motivation for introducing the BCFW recursion
relation is so that we can prove the Parke-Taylor identity for n > 4 point functions by
induction. This is exactly what we do now.

Consider an n-point MHV amplitude, A(1−, 2+, ..., (n − 1)+, n−), and assume that the
Parke-Taylor formula holds for all lower point MHV amplitudes. We now perform a 〈1−n−]
shift. The important thing to notice is that there are only two types of diagrams can con-
tribute, namely:

1̂−

2+

ÂL

n̂−

(n− 1)+

3+

. . .

ÂR
P̂

+ −

1̂−

2+

(n− 2)+

. .
.

ÂL

n̂−

(n− 1)+

ÂR
P̂

− +

The reason we only have these two diagrams is because, as we showed before (Equation (3.11)),

An(−,+,+, ...,+) = 0 ∀n > 3,

and every other diagram would contain a subamplitude of exactly that form.
Now each of the diagrams above contain a MHV3 amplitude (the ÂL in the first one

and the ÂR in the second one). Then recall that for such a amplitude we have all the λs
proportional, and since we are shifting λ1 but not λn (we shift λ̃n), it will be possible to
choose z such that the 3-point kinematics is satisfied by ÂL in the first diagram. However,
in general the 3-point kinematics will not be satisfied by ÂR in the second diagram. This is
just because the ÂL contains λ1 but ÂR contains λn, and we can shift the former but not
the latter. This tells us that the second diagram must vanish for generic kinematics. We can
verify this more explicitly.

For the second diagram we have5

P̂ (z) = −
(
p̂n(z) + pn−1

)
= −

(
pn + pn−1

)
− zq

5Note we have a minus sign here as P̂ is given by the external momenta of ÂL, which is p̂1+p2+ ...+pn−2.
Then momentum conservation, p̂1 + p2 + ...+ pn−1 + p̂n = 0 gives us the minus sign.
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with q = λ̃1λn from before. Therefore, denoting the pole value as z∗, we have

z∗ =
(pn−1 + pn)2

−2(pn−1 + pn) · q
= −〈(n− 1)n〉[n(n− 1)]

〈(n− 1)n〉[1(n− 1)]
= − [n(n− 1)]

[1(n− 1)]
.

From here we have

−P̂ (z∗) = λ̃n−1λn−1 + λ̃nλn −
[n(n− 1)]

[1(n− 1)]
λ̃1λn

= λ̃n−1λn−1 +

(
λ̃n +

[(n− 1)n]

[1(n− 1)]
λ̃1

)
λn

= λ̃n−1λn−1 +

(
λ̃n[1(n− 1)] + [(n− 1)n]λ̃1

[1(n− 1)]

)
λn

= λ̃n−1λn−1 +
[1n]

[1(n− 1)]
λ̃n−1λn

= λ̃n−1

(
λn−1 +

[1n]

[1(n− 1)]
λn

)
,

where we have used the Schowten identity

[1(n− 1)]λ̃n + [(n− 1)n]λ̃1 = [1n]λ̃n−1.

We can write this all in terms of λs using P̂ = λ̃
P̂
λ
P̂
:

− λ̃
P̂
λ
P̂

= λ̃n−1

(
λn−1 +

[1n]

[1(n− 1)]
λn

)
. (4.8)

Now from Equation (3.7) we have

ÂR(z∗) = − [P̂ (n− 1)]3

[(n− 1)n̂][n̂P̂ ]
,

but then from Equation (4.8) we have

[P̂ (n− 1)] ∼ [(n− 1)(n− 1)] = 0,

and

[n̂P̂ ] ∼ [n̂(n− 1)] =
(
[n|+ z∗[1|

)
|n− 1] = [n(n− 1)]− [(n− 1)n]

[1(n− 1)]
[1(n− 1)] = 0

which also gives us [(n− 1)n̂] = 0, and so

ÂR(z∗) =
03

02
= 0,

and so the second diagram vanishes, as claimed.
So we only need to consider the first diagram above6 which gives us

An(1−, 2+, ..., (n− 1)+, n−) = − [2(−P̂ )]3

[−P̂ 1̂][1̂2]

1

(p1 + p2)2

〈n̂P̂ 〉3

〈P̂3〉...〈(n− 1)n̂〉
.

6Hopefully the initial motivating simplifications that arise from using this approach to amplitudes has
become clear at this point.
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Now let
λ−P̂ = λ

P̂
and λ̃−P̂ = −λ̃

P̂
=⇒ λ̃−P̂λ−P̂ = −λ̃

P̂
λ
P̂
.

Then using
|P̂ ]〈P̂ | = λ̃α̇

P̂
λα
P̂

= P̂ = p̂1 + p2 = |p̂1]〈p̂1|+ |p2]〈p2|,

we have
[2(−P̂ )]〈n̂P̂ 〉 = [2P̂ ]〈P̂ n̂〉 = [2|

(
p̂1]〈p̂1|+ |p2]〈p2|

)
|n̂〉 = [21]〈1n〉,

where we have also used |n̂〉 = |n〉 and 〈1̂n〉 = 〈1n〉. Similarly we have

[−P̂ 1̂]〈P̂3〉 = [1̂P̂ ]〈P̂3〉 = [1̂|
(
p̂1]〈p̂1|+ |p2]〈p2|

)
|3〉 = [12]〈23〉.

Then simply from [1̂| = [1| and |n̂〉 = |n〉, we also have

[1̂2] = [12] and 〈(n− 1)n̂〉 = 〈(n− 1)n〉.

Finally, we have
(p1 + p2)2 = 〈12〉[21],

so in total we have

An(1−, 2+, ..., (n− 1)+, n−) =
〈n1〉3

〈12〉〈23〉...〈(n− 1)n〉
,

which is the Parke-Taylor formula, Equation (3.8).7

7Note that in the numerator we have 〈n1〉, this accounts for the minus sign missing from cancelling
〈1n〉4/〈n1〉 = −〈1n〉3 from Equation (3.8).



5 | Symmetries Of Amplitudes

As we have seen, scattering amplitudes have tremendous mathematical simplicity. As we
explained at the beginning of the course, very often this is because of underlying symmetries
which are sometimes hidden from the point of view of the action and standard Feynman
diagram techniques. For the rest of the course, we will explore the conformal symmetries of
tree-level Yang-Mills amplitudes and their SUSY extension. We will then introduce twistors
and briefly describe how they can be used to realise Yangian symmetry of N = 4 SYM and
formulate a worldsheet description.

5.1 Review Of Conformal Group

As we have an entire course on CFT, this is just a brief section to recap the relevant infor-
mation needed here.

The generators of the conformal group are

(i) Poincaré

(a) Translations:

Pµ = −i ∂

∂xµ
.

(b) Lorentz:

Mµν = i

(
xµ

∂

∂xν
− xν

∂

∂xµ

)
.

(ii) Dilatations:

D = −ixµ ∂

∂xµ
.

(iii) Special Conformal:

Kµ = i

(
x2 ∂

∂xµ
− 2xµx

ν ∂

∂xν

)
The special conformal transformations are related to the translations by the inversion
operator,

I(xµ) =
xµ

x2
,

simply as Kµ = IPµI.

37
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5.2 4D SYM

In 4D Minkowski spacetime, these generate SO(2, 4). 4D SYM theory has no dimensionful
parameters, and therefore enjoys classical conformal symmetry, which is broken quantum
mechanically. Quantum mechanics enters at loop level, so we expect the tree-level amplitudes
to be conformally invariant for 4D SYM.

5.2.1 Generators In Spinor Form

How is this symmetry realised for amplitudes? Well, in principal, this can be deduced by
Fourier transforming the generators to momentum space and changing to spinor variables
by the prescriptions above. However very little is gained from this calculation, and so here
we simply write our the generators in spinor form and verify that they annihilate MHV
amplitudes. Given the spinor form, it is not difficult to verify that they obey the conformal
algebra relations (i.e. the commutator relations).

(i) Translations:
pα̇α = λ̃α̇λα. (5.1)

(ii) Lorentz:

mαβ = λ(α
∂

∂λβ)
and m̃α̇β̇ = λ̃(α̇

∂

∂λ̃β̇)
, (5.2)

where the brackets indicate index symmetrisation.

(iii) Dilatations:

d =
1

2
λα

∂

∂λα
+ λ̃α̇

∂

∂λ̃α̇
+ 1. (5.3)

(iv) Special Conformal:

kαα̇ =
∂

∂λαλ̃α̇
. (5.4)

Let’s verify that they annihilate the tree-level MHV amplitudes

AMHV
n ≡ A(1+, ..., i−, ..., j−, ..., n+) = δ4

( n∑
i=1

pi

)
〈ij〉

〈12〉...〈n1〉

where the delta function imposes momentum conservation. We put this in as we can then
treat the spinor variables in the rest of the expression as independent variables. We will use

p :=

n∑
i=1

pi

to lighten notation. The full symmetry generators are obtained by defining the above gener-
ators for each external leg and then summing them all up.

(i) Translations: these are trivial as we simply get( n∑
i=1

pi

)
δ4(p) = pδ4(p) = 0.
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(ii) Lorentz: this follows from the invariance of 〈jk〉 and [jk],
n∑
i=1

mi,αβ〈jk〉 =

n∑
i=1

λi(α
∂

∂λ
β)
i

λγjλkγ

=
1

2

(
λjαδ

γ
βλkγ + λγjλkαεγβ

)
+ (α↔ β)

=
1

2

(
λjαλkβ − λjβλkα

)
+ (α↔ β)

= 0,

and then similarly for the
∑
m̃i,α̇β̇[jk] calculation.

(iii) Dilations: First note that
n∑
i=1

1

2
λα

∂

∂λα
+ λ̃α̇

∂

∂λ̃α̇

just counts mass dimension. So from[
δ4(p)

]
= −4,

[
〈ij〉

]
= 4 and

[(
〈12〉...〈n1〉

)−1]
= −n

and
n∑
i=1

1 = n,

we have
dAMHV

n = (−4 + 4− n)AMHV
n + nAMHV

n = 0.

(iv) Special Conformal: this take a bit more work. First let’s introduct that notation

ÃMHV
n :=

〈ij〉
〈12〉...〈n1〉

=⇒ AMHV
n = δ4(p)ÃMHV

n .

Then, noting
∂ÃMHV

n

∂λ̃α̇i
= 0,

we have
n∑
i=1

ki,αα̇A
MHV
n =

n∑
i=1

∂

∂λαi λ̃
α̇
i

[
δ4(p)ÃMHV

n

]
=

n∑
i=1

∂

∂λαi

[
∂pβ̇β

∂λ̃α̇i

∂δ4(p)

∂pβ̇β
ÃMHV
n

]

=
n∑
i=1

∂

∂λαi

[
λβi δ

β̇
α̇

∂δ4(p)

∂pβ̇β
ÃMHV
n

]

=

n∑
i=1

[
δβαδ

β̇
α̇

∂δ4(p)

∂pβ̇β
ÃMHV
n + λβi δ

β̇
α̇λ̃

γ̇
i δ
γ
α

∂2δ4(p)

∂pγ̇γ∂pβ̇β
ÃMHV
n + λβi δ

β̇
α̇

∂δ4(p)

∂pβ̇β
∂ÃMHV

n

∂λαi

]

=

[
nδβαδ

β̇
α̇

∂δ4(p)

∂pβ̇β
+ pβ̇β

∂2δ4(p)

∂pα̇β∂pβ̇α

]
ÃMHV
n +

∂δ4(p)

∂pα̇β

n∑
i=1

λβi
∂ÃMHV

n

∂λαi
.
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This looks like a horrible mess, but now we note that

λβ
∂

∂λα
= λ(β

∂

∂λα)
+ λ[β

∂

∂λα]
= mαβ +

1

2
εβαλ

γ ∂

∂λγ
,

so the last term in the expression above simply gives

∂δ4(p)

∂pα̇β

n∑
i=1

λβi
∂ÃMHV

n

∂λαi
=
∂δ4(p)

∂pȧβ

n∑
i=1

(
mβ

α +
1

2
δβαλ

γ
i

∂

∂λγi

)
AMHV
n = (4− n)

∂δ4(p)

∂pα̇β
AMHV
n ,

where we have used that the Lorentz generators annihilate AMHV
n and that the derivative

term will just give the weight, (4− n), as in the dilatation calculation.

So in total we are left with
n∑
i=1

ki,α̇αA
MHV
n =

[
4
∂δ4(p)

∂pα̇α
+ pβ̇β

∂2δ4(p)

∂pβ̇α∂pα̇β

]
ÃMHV
n .

The claim is now that

pβ̇β
∂2δ4(p)

∂pβ̇α∂pα̇β
= −4

∂δ4(p)

∂pα̇α
.

We can verify this by integrating against a test function:∫
d4pF (p)pβ̇β

∂2δ4(p)

∂pβ̇α∂pα̇β
= −

∫
d4p

(
∂F

∂pβ̇α
pβ̇β + F2δβα

)
∂δ4(p)

∂pα̇β

=

∫
d4p

(
∂2F

∂pα̇β∂pβ̇α
pβ̇β +

∂F

∂pβ̇α
2δβ̇α̇ +

∂F

∂pα̇β
2δβα

)
δ4(p)

= 4

∫
d4p

∂F

∂pα̇α
δ4(p)

= −4

∫
d4pF (p)

∂δ4(p)

∂pα̇α
,

and so we have
n∑
i=1

ki,αα̇A
MHV
n = 0.

So we have shown that our given conformal symmetry generators annihilate the MHV
tree-level amplitudes.

5.2.2 SUSY

It’s possible to extend the conformal group by introducing Grassman-odd variables, ηA, and
defining the new generators

qαA := λαηA,

q̃α̇A := λ̃α̇
∂

∂ηA
,

sαA :=
∂

∂λα
∂

∂ηA

s̃Aα̇ := ηA
∂

∂λ̃α̇

(5.5)
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These generators obey

{qαA, q̃α̇B} = δABp
α̇α and {sαA, s̃Bα̇ } = δBAkαα̇ (5.6)

Exercise

Verify Equation (5.6) hold.

The range of A corresponds to the amount of SUSY.1 For example if we want to describe
N = 4 SYM, A = 1, 2, 3, 4, which is the maximally symmetric YM theory in 4D.

In contrast to the fact that conformal symmetry is broken quantum mechanically in pure
YM, superconformal symmetry in N = 4 SYM persists in the quantum theory. Due to its
high degree of symmetry, many quantities in N = 4 SYM can be analytically computer to
high, and in some cases arbitrary, order in coupling. In that sense, N = 4 SYM can be
thought of as a toy model for QCD. For this reason we will focus on the case of N = 4 SYM
for the remainder of this course.

In addition to the SUSY generators, Equation (5.5), the superconformal group also has
R-symmetry generators,

rAB := ηA
∂

∂ηB
− 1

4
δABη

C ∂

∂ηC
, (5.7)

which generate SU(4) rotations in the ηA space. We summarise the the superconformal
generators in the following table, also listing their mass dimension (or equivalently their
dilatation weight)

Name Symbol Mass Dimension

Translations pα̇α 1

SuperPoincaré qαA and q̃α̇A 1/2

Lorentz mαβ and m̃α̇β̇ 0

Dilatations d 0

R rAB 0

SuperConformal sαA and s̃Aα̇ −1/2

Special Conformal kαα̇ −1

The reason we listed their mass dimensions is that it gives us insight into the structure
of the superconformal symmetry algebra, namely through the fact that the weight of the

1See the SUSY course for more on this.
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commutator of objects of weight w1 and w2 is (w1 + w2). In particular this allows us to see
that we can obtain all other generators from commuting q, q̃, s and s̃.2

We also modify the definition of the helicity operator to be

h :=
1

2

(
− λα ∂

∂λα
+ λ̃α̇

∂

∂λ̃α̇
+ ηA

∂

∂ηA

)
. (5.8)

We can easily check that this commutes with all of the generators, and so it represents a
central extension of the algebra. In other words it can be used to define a central charge c.
For example, we find that

{qαA, sβB} = mα
βδ
A
B + δαβ r

A
B +

1

2
δαβ δ

A
B

(
d+ c

)
,

where

c = 1− h. (5.9)

We the define superamplitudes to be annihilated by all superconformal generators and the
central charge c, just as our ‘normal’ amplitudes were annihilated by the conformal generators.
It follows from Equation (5.9), then, that all superamplitudes have helicity +1:

cA = 0 ⇐⇒ hA = A.

What exactly is a superamplitude? It should be thought of as the scattering amplitude
for superfields, which encode all on-shell degrees of freedom.3 For N = 4 SYM with gauge
group SU(N) the superfields are given by the component decomposition

Φ(λ, λ̃, η) = g+(p)+ηAψA(p)+
1

2
ηAηBφAB(p)+

1

3!
ηAηBηCεABCDψ̄

D(p)+
1

4!
ηAηBηCηDεABCDg−(p),

where p = λ̃λ and where

• g± are gluons, i.e. h = ±1, respectively,

• ψA and ψ̄A are 4 + 4 Fermions, i.e. h = ±1/2, respectively

• φAB = −φBA are 6 scalars, i.e. h = 0,

are known as the components, and they all transform in the adjoint representation of SU(N)
(we have suppressed the colour indices above). From this it is easy to check that hΦ = Φ.

Note that we have 2 + 6 = 8 = 4 + 4 Bosons and Fermions, respectively, which is in
agreement with the fact that SUSY requires there to be the same number of each. Indeed,
SUSY mixes Bosons and Fermions and the SUSY transformations of component fields can be
read off from4

δqΦ ≡ ξαAqαAΦ, and δq̄Φ ≡ ξ̄Aα̇ q̄α̇AΦ.
2Note this is just a heuristic argument. In itself it does not tell us how to relate pα̇α, say, to the qs and

ss. The point is that you can anticipate the structure of the superalgebra simply from dimensional analysis
and index structure, but you would need to carry out a calculation to prove it. The bottom line is that if you
want to verify that an amplitude is superconformal, it’s sufficient to show that its annihilated by the qs and
ss.

3See SUSY course for more details on superfields.
4For more details on how to do this, again see the SUSY course.
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5.2.3 Superamplitudes

A superamplitude encodes gluon amplitudes and all other component amplitudes related
by SUSY. In general the superamplitude will be a polynomial in ηs, and the component
amplitudes are coefficients of the polynomial.5 Since each component field is associated with
a certain monomial of ηs in the superfield, each component amplitude is multiplied by the
product of η monomials for each component field in the amplitude.

For example, an n-point MHV amplitudeAn(−,−,+, ...,+) will be multiplied by (η1)4(η2)4,
where

(ηi)
4 =

1

4!
εABCDη

A
i η

B
i η

C
i η

D
i ,

since each negative helicity gluon, g−(p), appears with (η)4 in the superfield, but the positive
helicity gluon, g+(p), doesn’t appear with any ηs.

From this, we see that the superamplitude which contains an MHV amplitude must have
Fermionic degree of weight 8. On the other hand, it must be annihilated by the multiplicative
charges

qαA =

n∑
i=1

λαi η
A
i and pα̇α =

n∑
i=1

λ̃α̇i λ
α
i .

Hence, the MHV superamplitude must take the form

AMHV
n = δ4(p)δ8(q)Pn(λi, λ̃i)

where

δ8(q) :=
1

24

4∏
A=1

qαAqAα =
4∏

A=1

∑
i<j

〈ij〉ηAi ηAj . (5.10)

Moreover, we can determine the function Pn by demanding that the (η1)4(η2)4 component of
the superamplitude is An(−,−,+, ...,+). Noting that∫

d4η1d
4η2δ

8(q) = 〈12〉4,

we see that Pn must be
Pn =

1

〈12〉...〈n1〉
.

Hence

AMHV
n =

δ4(p)δ8(q)

〈12〉...〈n1〉
. (5.11)

Remark 5.2.1 . Note that this amplitude encodes all n-point gluonic MHV amplitudes. Indeed∫
d4ηid

4ηjA
MHV
n =

〈ij〉4

〈12〉...〈n1〉
δ4(p).

It also encodes amplitudes with scalars and Fermions.
5Again this idea should be clear from the SUSY course.
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5.2.4 Supertwistor Space & Yangian Symmetry

Now note that, apart from through δ4(p), Equation (5.11) does not depend on λ̃s at all! This
has important consequence. In particular let’s Fourier transform the amplitude in λ̃i and ηi,
using µi and χi being the Fourier conjugates, respectively:

An(λi, µi, χi) =

∫ n∏
i=1

d2λ̃id
4ηi

(2π)4
exp

[
i

( n∑
i=1

(
µα̇i λ̃iα̇ + χAi ηiA

))]

×
∫
d4xd8Θ exp

[
i

(
xαα̇

n∑
i=1

λ̃α̇i λ
α
i + ΘA

α

n∑
i=1

ηiAλ
A
i

)]
1

〈12〉...〈n1〉

=

∫
d4xd8Θ

n∏
i=1

δ2
(
µi + x · λi

)
δ4
(
χi + Θ · λi

) 1

〈12〉...〈n1〉
,

where we have used

δ4(p)δ8(q) =

∫
d4xd8Θ exp

[
i

(
xαα̇

n∑
i=1

λ̃α̇i λ
α
i + ΘA

α

n∑
i=1

ηiAλ
A
i

)]
.

The space (λ, µ, χ) is known is supertwistor space. We then find that MHV superamplitudes
are supported on degree 1 curves in twistor space. (x,Θ) are the moduli of the curves. More
generally, NkMHV amplitudes are supported on (k + 1) degree curves. This property of
amplitudes can be made manifest by reformulating N = 4 SYM as a string theory whose
target space is twistor space. For obvious reasons we do not discuss this further here but
further details can be found via hep-th/0312171.

Twistors are also useful for studying the symmetries of scattering amplitudes. In particu-
lar, if we replace

λ̃→ ∂

∂µ
,

∂

∂λ̃
→ µ, ηA →

∂

∂χA
, and

∂

∂ηA
→ χA

in the definition of the super conformal generators defined earlier, we find that they all become
first order differential operators

J (0)a
b =

n∑
i=1

Zai
∂

∂Zbi
,

where

Zai :=

λαµα̇
χA

 .

For example,

pi =
n∑
i=1

λ̃α̇i λ
α
i →

n∑
i=1

λαi
∂

∂µiα̇
.

Hence, superconformal symmetry is linearly realised in twistor space; twistors transform in
the fundamanetal representation of the superconformal group.

https://arxiv.org/pdf/hep-th/0312171.pdf
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Furthermore, the following non-local operators are also symmetries of the planar ampli-
tudes, which are hidden from the point of view of the action:

J (1)a
b =

∑
i<j

[
Zai

∂

∂Zci
Zcj

∂

∂Zbj
− (i↔ j)

]
.

Note that the algebra of these generators does not close and implies an infinite-dimensional
symmetry known as Yangian symmetry. This is a hallmark of integrability, and is another
hint that N = 4 SYM has a worldsheet description since integrability is usually restricted to
2d models. In fact the Yangian symmetry of N = 4 SYM can be understood from IIB string
theory on AdS5 × S5, which is dual to N = 4 SYM at strong coupling.

In summary, scattering amplitudes are not only essential for relating theory to experiment,
they also provide a window into the underlying mathematical structure of QFT.



Useful Texts & Further Readings

Name of section

• Scattering Amps In Gauge Theories, Henn and Plefka

• QFT Srednicki

• Scattering Amps, Eluang and Huarg
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