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1 | Groups

1.1 Why Do We Care About Group Theory?

As we will see, symmetries are often related to groups and, as any quantum field theorist
knows, symmetries are incredible important and powerful tools in physics. They allow us
to massively simplify complex problems and they also reveal a lot about the physics. The
symmetries can actually be so powerful that it allows us to solve the theory exactly. We refer
to this as integrability. In fact I guess you could argue that, at least at an introductory level,
QFT is the study of symmetries in Lagrangians and their corresponding conserved currents.1

Example 1.1.1 . Electric charge is conserved in particle interactions, and so there is some
symmetry in the Lagrangian that corresponds to this.

There are several symmetries that occur in Nature that we may be familiar with, here are
some examples:

Symmetry Group Continuous Or Discrete

Rotational SO(3) Continuous
Lorentz SO(3, 1) Continuous
Gauge & Flavour e.g, SU(3) Continuous
Parity ~x −→ −~x Discrete
Charge Conjugation e− −→ e+ Discrete
Time Reversal t −→ −t Discrete

We have indicated whether the symmetry is a continuous or discrete symmetry. The names
are reasonably self explanatory. In this course we will focus on continuous symmetries as they
give rise to Lie algebras (which we will study a lot).

Remark 1.1.2 . It actually turns out the neither parity, nor charge conjugation, nor time re-
versal are proper symmetries of the standard model of particle physics. The combination of
charge and parity, known as CP, is a symmetry of the electromagnetism and QCD (strong
force), and the full beast charge-parity-time, CPT, is a symmetry of the weak force.

1.2 Group Definitions

The next section is going to contain a lot of definitions, so if you are not used to reading
maths notes... enjoy!

1If this means nothing to you, look up Noether’s Theorem.

1



LECTURE 1. GROUPS 2

1.2.1 Generalities

Definition. [Group] A group G is a set {g} equipped with a multiplication law

• : G×G→ G

(g1, g2) 7→ g1 • g2,

such that:

(i) Closure; ∀g1, g2 ∈ G, g1 • g2 ∈ G,

(ii) Associativity; ∀g1, g2, g3 ∈ G, g1 • (g2 • g3) = (g1 • g2) • g3,

(iii) Identity; there exists a unique e ∈ G such that ∀g ∈ G e • g = g • e = g, and

(iv) Inverse; ∀g ∈ G there exists a unique element g−1 ∈ G such that g−1•g = g•g−1 = e.

Definition. [Order Of A Group] Let (G, •) be a group. Then we call the number of
elements in G the order of the group.

Remark 1.2.1 . We call • a multiplication, however it need not multiply two elements by our
common understanding of the word. For example • could be addition, as we will see in the
examples below.

Exercise

Show that the identity and inverse are unique. Hint: Suppose that they aren’t unique
and prove by contradiction.

Definition. [Subgroup] Let (G, •) be a group and let H ⊂ G be a subset. Then H is a
subgroup (H, •) is itself a group.

Remark 1.2.2 . Note by the uniqueness of the identity, if H ⊂ G is to be a subgroup, it must
contain e.

Definition. [Abelian Group] Let (G, •) be a group. We say that it is abelian if, for all
g1, g2 ∈ G

g1 • g2 = g2 • g1.

Example 1.2.3 . The real numbers equipped with addition, (R,+) form a continuous, abelian
group. The identity is simply 0 ∈ R and the inverse of a ∈ R is −a ∈ R. Associativity and
closure should be easy to see from every day use. The order is infinite.

Example 1.2.4 . The real numbers, excluding the origin, equipped with multiplication, (R∗,×),
forms a continuous, abelian group. Again closure and associativity should be familiar. The
identity is simply 1 ∈ R∗ and the inverse of a ∈ R∗ is 1

a ∈ R∗. It is because inverse condition
that we need to exclude the origin. It might not seem obvious at first that this group is
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continuous as we have removed the origin. However simply consider redefining all the elements
as a −→ 1/a, then the origin is taken all the way to infinity and we’re happy. The order is
infinite.

Example 1.2.5 . The set of integers modulo n equipped with addition, (Zn,+n),2 form a dis-
crete, abelian group. We can show closure and associativity easily given that we know (Z,+)
is a group. We simply define the addition +n by

[a] +n [b] := [a+ b],

where the addition on the right-hand side is the addition on Z. We need to show this is well
defined: our equivalence relation is given by

a′ ∼ a ⇐⇒ a′ − a = An

where A ∈ Z (i.e. a′ and a differ by an integer multiple of n). So let’s consider a′ = a + An
and b′ = b+Bn where A,B ∈ Z, so [a′] = [a] and [b′] = [b]. Then we have

[a′] +n [b′] := [a′ + b′]

= [(a+An) + (b+Bn)]

= [a+An+ b+Bn]

= [(a+ b) + (A+B)n]

= [a+ b],

where we have used the associativity and abelian nature of (Z,+) and that (A + B) ∈ Z so
[(a+ b) + (A+ B)n] = [a+ b]. This shows our definition is well defined. We then inherit all
the group properties from (Z,+). In particular, the identity is [0] ∈ Zn and the inverse of
[a] ∈ Zn is [−a] ∈ Zn. The order is n, as any integers greater than n − 1 or less than 0 are
equivalent to one in the set {0, ..., n− 1}.

Example 1.2.6 . The permutation of n elements, denoted Sn, forms a discrete group. I am not
going to prove this one here, but set it as an exercise below. The order is n!

Exercise

Prove that the above example is true. Hint: You can prove this by writing a permutation
as

σ =

(
a1 a2 ... an

σ(a1) σ(a2) ... σ(an)

)
,

and then making a bijective argument.

Any mathematicians reading this will ask the obvious question of "what is the structure
preserving map?" That is, what map makes two different groups ‘look the same’? The answer
is the following definition.

2I have put a subscript n on here because technically this addition is different to the additional on integers
(it adds equivalence classes). I will use the notation of equivalence relations (square brackets etc) in the proof.
If this is not familiar to you, don’t worry its not needed to understand the course. However they are useful in
maths so I encourage you to read up on them.
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Definition. [Group Isomorphism] Let (G, •) and (H, ◦) be two groups. Then if there exists
a bijective map φ : G→ H satisfying

φ(g1 • g2) = φ(g1) ◦ φ(g2)

for all g1, g2 ∈ G, then we call φ a group isomorphism. We say that the groups (G, •) and
(H, ◦) are (group) isomorphic, which we write as G ∼=grp H.3

In this course we are going to be interested mostly in matrix groups, where the multipli-
cation law is simply matrix multiplication. Note that in general these will not be abelian. In
any proofs that follow, we will assume associativity holds to save time. We will also drop the
• basically everywhere and just assume matrix multiplication is implicit.

1.2.2 Matrix Groups

For the non-maths people, unfortunately we are not done with the definitions: we need to
define some matrix sets that will appear a lot. Even though we are essentially just defining
the sets below, we will call them the so-and-so group. This is just because they always pop
up as matrix groups, so we may as well call them that. The proofs just show that the group
conditions meets the restrictions on the set.

Definition. [General Linear Group] The general linear over R group is the matrix group
with set4

GL(n,R) :=
{
A ∈MR

n×n | detA 6= 0
}
.

We can similarly define GL(n,C). The detA 6= 0 condition is needed so that A is invertible
(which is the inverse of A in the group).

Proof. First note that the identity is the n× n identity matrix 1n which has det 1n = 1 6= 0.
Next recall the relation

det(AB) = det(A) det(B).

So if detA, detB 6= 0 then det(AB) 6= 0. Using the above relation we also have

1 = det 1n = det
(
AA−1

)
= det(A) det

(
A−1

)
,

and so detA−1 = (detA)−1 6= 0.

Using the fact that det 1n = 1, and with Remark 1.2.2 in mind, we can define the following
matrix group.

Definition. [Special Linear Group] The special5 linear group over R is the matrix group
with set

SL(n,R) :=
{
A ∈ GL(n,R) | detA = 1

}
.

This is a subgroup of GL(n,R). Again we can define SL(n,C) similarly.

Proof. Everything follows through as with the above proof but with = 1 everywhere.
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Definition. [Orthogonal Group] The orthogonal group is the matrix group with set

O(n) :=
{
A ∈ GL(n,R) |AAT = ATA = 1n

}
.

Proof. The identity and inverse clearly obey the transpose condition. So just need to show it
for closure:

(AB)T (AB) = BTATAB = BT1nB = BTB = 1n,

where we have used (AB)T = BTAT and the definition of the identity element in a group.
Note, using

detAT = detA,

we have
1 = det 1n = det

(
ATA

)
= detAT detA = (detA)2,

so detA = ±1 for A ∈ O(n).

With footnote 4 in mind, we have the following definition.

Definition. [Special Orthogonal Group] The special orthogonal group is the matrix group
with set

SO(n) :=
{
A ∈ O(n) | detA = 1

}
. (1.1)

Proof. We’ve basically done all the work for this.

Let’s give an example of O(n) and SO(n) in order to highlight their difference.

Example 1.2.7 . Let n = 2 then

O(2) =

{(
cos θ sin θ
− sin θ cos θ

)
∪
(
− cos θ sin θ
sin θ cos θ

) ∣∣∣ θ ∈ [0, 2π)

}
,

and

SO(2) =

{(
cos θ sin θ
− sin θ cos θ

) ∣∣∣ θ ∈ [0, 2π)

}
.

Now consider the actions on these matrices on a general vector in R2 with θ = π/2(
cosπ/2 sinπ/2
− sinπ/2 cosπ/2

)(
x
y

)
=

(
y
−x

)
,

which is an anticlockwise rotation by π/2. We also have(
− cosπ/2 sinπ/2
sinπ/2 cosπ/2

)(
x
y

)
=

(
y
x

)
,

which is a reflection about the x = y axis. Indeed SO(n) is the set of rotations in n-dimensions
and O(n) is both rotations and reflections. The rotations have detA = 1 and reflections
detA = −1.
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Unlike with the linear groups, we can’t extend the definition of the orthogonal groups to
the complex numbers. This is because for complex matrices we need to take the Hermitian
conjugate instead of transpose. These groups are significantly different that we give them
separate names.

Definition. [Unitary Group] The unitary group is the matrix group with set

U(n) :=
{
A ∈ GL(n,C) |UU † = U †U = 1n,

}
Proof. The proof for this is basically identical to O(n) but now we get

detA = eiα, α ∈ [0, 2π).

Of course we also have the special case.

Definition. [Special Unitary Group] The special unitary group is the matrix group with
set

SU(n) :=
{
A ∈ U(n) | detA = 1

}
. (1.2)

Proof. Again basically done.

1.3 Lie Groups

All of the above matrix groups are examples of what are known as Lie groups. This course is
predominantly the study of the Lie groups SO(n) and SU(n).

So what is a Lie group? Well we have seen (or at least just said) that the groups we
are interested in are continuous. We can therefore think of them as some kind of continuous
geometric shape, with each point on the shape corresponding to an element in the group. For
example, we could maybe think of SO(2) as a circle in the xy-plane and identify the elements
of SO(2) by the angle from the x-axis.

x

y

θ
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Now we note that in order to do this, we have to ‘project’ our circle down onto the xy-
plane (because the dashed line does not lie on the circle itself). To those familiar with general
relativity, this looks a awful lot like a manifold, and indeed that’s exactly what it is. For
those not familiar, I shall provide a brief explanation of what a manifold is now. If you don’t
follow this, see any differential geometry textbook, or my notes on Dr. Schuller’s GR course.

1.3.1 Manifolds (In a Nutshell)

Definition. [Manifold] A manifold is the triple (M,O,A), where M is a set, O is a
topology,6 and A is an atlas. The atlas is a collection of doublets (U,ϕU ) where U ∈ O is
an open set in M and ϕU : U → Rn is an injective7 map onto the plane. The dimension
of the manifold is n. If U, V ∈ O are overlapping sets, i.e. U ∩ V 6= ∅, then we can place
conditions on the maps ϕV ◦ ϕ−1U : ϕ(U)→ ϕ(V ) (i.e. they are maps from open subsets of
Rn to open subsets of Rn) in order to give the manifold itself some properties.

Ok that above definition will mean almost nothing to someone who doesn’t know what it
already means so let’s given an example using the circle above.

Example 1.3.1 . Our set M is the points on the circle. We now need a topology, O. These
need to be open (i.e. we cannot take a ‘hard cut’ of the circle), and every point of the circle
must be in at least one element of the topology. This means we need at least two elements in
our topology. Why? Well consider using just one element. We either don’t cover the whole
circle (left in diagram below) or we cover the same point twice in one element (right below):

The left one is obviously a problem because there’s a bit missing. The right one is a problem
because we wanted our maps ϕU to be injective, but now we have two points in U that will be
mapped to the same point, so its not injective. We therefore need something like the following
diagram:

https://68e2be02-1beb-4f45-b742-5f60efd2d044.filesusr.com/ugd/6b203f_dc24fe06fbe14a71ae32a1ad031e1928.pdf?index=true
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U

V

We then define our maps ϕU/V to the real line R as shown diagrammatically below:

R0 π 2π

We obviously require that ϕU (U ∩ V ) = ϕV (U ∩ V ), i.e. we get the same value on the R line
where where the red and blue lines overlap.

We said at the end of the definition above that we can put constraints on the transition
maps ϕV ◦ϕ−1U and get conditions on the manifold itself. The questions is "what kind of con-
straints do we use?" Well in the above we have actually already assumed that these transition
maps are continuous, but there is a stronger constraint we can imply known as smoothness.
This is essentially the condition that all the transition maps are infinitely differentiable with
continuous result. We call such manifolds smooth (or C∞). By doing this we can talk about
maps f :M→M themselves as being smooth by projecting them down into the charts and
studying them there.8 These are hugely important constructions in GR and will be the type
of manifold we consider here.

1.3.2 Back To Lie Groups

Ok so we know (or at least know where to learn) what a smooth manifold is, so we can now
define a Lie group.

Definition. [Lie Group] A Lie group is a continuous group (G, •) whose underlying set is
a smooth manifold and where the multiplication map, • : G × G → G, and inverse map,
i : G→ G, defined by i(g) = g−1, are smooth.

It is clear that we need the groups to be continuous otherwise we wouldn’t be able to get
a manifold (i.e. our shape wouldn’t connect up and so our open sets would be a problem —
what is an open set of a single point?)

8For a much more detailed, and probably better, explanation see my notes on Dr. Schuller’s GR course.
Link above.
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Definition. [Dimension Of Lie Group] The dimension of the Lie group is given by the
dimension of the manifold.

Definition. [Lie Subgroup] Let (G, •) be a Lie group and let (H, •) be a subgroup. Then
we say (H, •) is a Lie subgroup if it is also a Lie group under the restriction of the maps to
H.

The mathematicians will now again ask "what are the structure preserving maps?" The
answer is again given by the following definition.

Definition. [Lie Group Isomorphism] Let (G, •) and (H, ◦) be two Lie groups that are
isomorphic as groups, i.e. G ∼=grp H, via the group isomorphism φ : G→ H. If φ is also a
diffeomorphism (that is it is smooth and its inverse is also smooth) then we say that the
Lie groups are isomorphic.

Claim 1.3.2 . We claim (without proof) that our lovely matrix groups above are Lie groups.
Their dimensions are given by the number of free parameters in the matrix. For example
SO(n) is a n(n+1)

2 dimensional Lie group.

Notation. From now on I am very likely to drop the multiplication when writing a group. As
in I will call G a (Lie) group without specifying the multiplication.

1.4 Lie Algebras

Lie groups have an associated structure known as a Lie algebra. It turns out that a lot of the
useful information about a Lie group can be found by studying its associated Lie algebra, it
also turns out that the Lie algebra is easier to study. The Lie algebra of a Lie group, G, is
the tangent space to the identity e ∈ G. To those unfamiliar with GR, a tangent space to a
point p ∈ M is basically the plane that ‘kisses’ the manifold at p. We can also think of the
Lie algebra as the points infinitesimally close to the identity.

As we just said, we can think of the Lie algebra as the elements infinitesimally close to
the identity. Now recall that the Taylor expansion of an exponential of a matrix is

eεM = 1 + εM +
1

2
ε2M2 + ...,

so if we consider ε to be some small continuous parameter, we can drop O(ε2) terms and
obtain

eεM ≈ 1 + εM.

This is an infinitesimal relation near the identity. So we can get the Lie algebra of a Lie group
by taking the exponential of the matrix.9

We will give the definition of a Lie algebra in a minute, but first let’s study via an example.
9Of course not all Lie groups are matrices, but as we said above, in these notes we are basically only

considering matrix groups.
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1.4.1 Example SO(3)

Consider the Lie group SO(3). As we said before SO(n) are rotations in n-dimensions. Let’s
consider explicitly a rotation around the z-axis10 by angle ϕz. The matrix is given explicitly
as

Rz(ϕz) =

 cosϕz sinϕz 0
− sinϕz cosϕz 0

0 0 1

 .

Now consider (as if by magic) the matrix

Tz :=

0 −1 0
1 0 0
0 0 0

 .

Then we can show (exercise below) that

RZ(ϕz) = eϕzTZ . (1.3)

Exercise

Prove Equation (1.3). Hint: Find out the general formula for (Tz)
n by considering

the first few values of n. Then Taylor expand the exponential and compare the Taylor
expansions of cos θ and sin θ.

We can show similar relations for rotations about the x and y axes by angles ϕx and ϕy,
respectively, with

Tx :=

0 0 0
0 0 −1
0 1 0

 , and Ty :=

 0 0 1
0 0 0
−1 0 0

 .

Remark 1.4.1 . Note that Tx, Ty, TZ /∈ SO(3)! In fact they are all antisymmetric, i.e. they
obey (Tx/y/z)

T = −Tx/y/z.

Now a general rotation in R3 can be written as

Rx(ϕx)Ry(ϕy)Rz(ϕz) = eϕxTxeϕyTyeϕzTz . (1.4)

This is nice, but what we really want is the right-hand side to be a single exponential instead
of the product of three! So how do we do this? Well we introduce the Baker-Campbell-
Haussdorff (BCH) formula.

Proposition 1.4.2 (BCH Formula). For any two matrices the following formula holds:

eAeB = eA+B+ 1
2
[A,B]+..., (1.5)

where
[A,B] = AB −BA

is the commutator between matrices. The ... terms on the right hand side are all made up of
the commutators.

10Note here we’re using one of our coordinate systems to define what we mean by z.
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Proof. We shall prove that Equation (1.5) holds up the the given terms. Insert a ‘book
keeping’ variable t (we can set t = 1 at the end) and consider the Taylor expansion

etAetB =

(
1 + tA+

1

2
t2A2 + ...

)(
1 + tB +

1

2
t2B2 + ...

)
= 1 + t(A+B) + t2

(
AB +

1

2
A2 +

1

2
B2

)
+O(t3).

Now we want to compare it to something of the form

et(A+B)+t2X = 1 + t(A+B) + t2X +
1

2
t2(A+B)2 +O(t3).

Comparing the right-hand sides of these two expressions order by order in t, we have

X =
1

2
A2 +

1

2
B2 +AB − 1

2
(A+B)2

=
1

2
[A,B],

which is exactly the result we wanted.

Remark 1.4.3 . Note that for Abelian groups we have [A,B] = 0 for all A,B ∈ G and so we
get the ‘usual’ formula

eAeB = eA+B.

Indeed the reason we are allowed to use this ‘identity’ when in school is because the real
numbers form an Abelian group under multiplication.

So we can now express the right-hand side of Equation (1.4) as a single exponential in
terms of Tx, Ty, Tz and their commutators. The question is "what are these commutators?"
Insert exercise.

Exercise

Show that
[Tx, Ty] = Tz, [Tz, Tx] = Ty, and [Ty, Tz] = Tx. (1.6)

Remark 1.4.4 . As we will see, this will turn out to be an important property in terms
of Lie algebras below.

This tells us that all the terms in our single exponential are determined by knowing Tx, Ty
and Tz. So we claim that the Lie algebra of our Lie group SO(3) is the vector space spanned
by these three matrices. This is much easier to study!

1.4.2 Converting Lie Group Properties To Lie Algebra Properties

We have defined our Lie groups as matrices with constrictions imposed, i.e. ATA = 1 etc.
The question is "what do these translate to in terms of the Lie algebra?" Well we use the
exponential map to find out.
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Let’s consider the orthogonal condition. Let

A = 1 + εa+O(ε2)

be our infinitesimal expansion around the identity. Now from ATA = 1, we have

1 = (1 + εa)T (1 + εa) +O(ε2)

= 1 + ε(aT + a) +O(ε2),

and so we conclude
aT = −a, (1.7)

which says that a is antisymmetric. This is exactly the condition the T s obeyed.

Exercise

Show that the special condition, detA = 1, translates to

Tr a = 0. (1.8)

Remark 1.4.5 . Note that antisymmetric matrices are already traceless (it’s 0s on diagonal),
however for SU(n) we will need this traceless condition to get the dimensions right.

The above two results tell us the the Lie algebra of SO(3) is the 3-dimensional vector
space of antisymmetric matrices and Tx, Ty and Tz form a basis for this vector space. In fact
we have that the Lie algebra for SO(n) is the vector space of antisymmetric n× n matrices,
which has dimension n(n−1)

2 .
For SU(n) we are considering complex spaces and so we have a choice to make. We either

define the infinitesimal expansion to be

H = 1 + iεh+O(ε2)

or the same without the i. Of course as long as we’re consistent it doesn’t matter which one
we pick. If we take the definition above, then by an analogous calculation to the one that
gave Equation (1.7), we have

h† = h, (1.9)

so the Lie algebra of SU(n) is the set of n × n hermitian, traceless matrices. These have
real dimension n2 − 1. The only thing that changes if we don’t use the i is that we get
antihermitian matrices, i.e. h† = −h. Of course the dimension is the same in both cases.

Example 1.4.6 . The Lie algebra of SU(2) is the set of 2 × 2 traceless, hermitian matrices.
These are just the Pauli matrices!

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ1 =

(
1 0
0 −1

)
. (1.10)

These are going to be very useful for us in the future.
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1.5 Definitions

Although we have motivated the idea of a Lie algebra via Lie groups, they are actually abstract
objects in their own right. That is, we don’t need a Lie group in order to define a Lie algebra.

Definition. [Lie Algebra] A Lie algebra, g, is a vector space equipped with a map

[, ] : g× g→ g,

called the Lie bracket, which satisfies the following conditions:

(i) Bilinearity; for all x, y, z ∈ g and α, β ∈ R11 we require

[αx+ βy, z] = α[x, z] + β[y, z],

and similarly for the second entry.

(ii) Antisymmetry; for all x, y ∈ g

[x, y] = −[y, x].

(iii) Jacobi identity; for all x, y, z ∈ g[
x, [y, z]

]
+
[
z, [x, y]

]
+
[
y, [z, x]

]
= 0.

The dimension of the Lie algebra is the dimension of the vector space.

Definition. [Lie subalgebra] Let (g, [, ]) be a Lie algebra and let h be a vector subspace.
Then (h, [, ]) is a Lie subalgebra if it is also a Lie algebra.

Note that the Lie bracket above does not need to be the commutator but could be some-
thing completely different. However it is relativity easy to show (exercise coming!) that the
vector space of matrices forms a Lie algebra when equipped with the commutator.

Exercise

Show the above claim.

Now, because g is a vector space, we can express any element in it in terms of a basis. But
we have just defined the Lie bracket to be a map to g, and so the result must be expandable
in the basis. This motives the below definition.

Definition. [Structure Constants] Let g be a Lie algebra and let {Ta} be a basis. Then
we define the structure constants fabc via the Lie bracket as

[Ta, Tb] =: fab
cTc. (1.11)

It follows from the antisymmetry of the Lie bracket that

fab
c = −fbac.
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Exercise

Show that the Jacobi identity implies

fab
dfcd

e + fbc
dfad

e + fca
dfbd

e = 0.

Hint: Note that the terms in the Jacobi identity are just cyclic permutations, so you
can save some time by just working out

[
Ta, [Tb, Tc]

]
and then cyclicly permuting the

result.

Remark 1.5.1 . As we will see, for the case of a Lie algebra associated to a Lie group, the
structure constants capture almost all of the properties of the associated Lie group.

As we did in the definition above, we often denote Lie algebras using ‘mathfrak’ notation.
This is especially true for Lie algebras that are associated to Lie groups, we give examples in
the table below.

Lie Group Lie Algebra

GL(n,R) gl(n,R)
SL(n,R) sl(n,R)
SO(n) so(n)
SU(n) su(n)

For future reference let’s write the last two explictly.

so(n) =
{
a ∈MR

n×n | aT = −a, Tr a = 0
}
. (1.12)

su(n) =
{
a ∈MC

n×n | a† = a, Tr a = 0
}
. (1.13)

Example 1.5.2 . Using Equation (1.6) we see that the structure constants of so(3) are the
Levi-Civita symbols, εijk, which are totally antisymmetric in all indices and obey

ε12
3 = 1.

We don’t often write the Levi-Civita tensor (density) this way and so the result is normally
written

[Ti, Tj ] = εijkTk,

even though this breaks summation convention.

Once again the mathematicians will ask "now what are the structure preserving maps for
Lie algebras?" Once again, we define the answer below. First we need to know what it means
for two vector spaces to be isomorphic.

Definition. [Vector Space Isomorphism] Let (A,+A, ·A) and (B,+B, ·B) be two vector
spaces over the same field, say R. Then the bijective map φ : A → B is a vector space
isomorphism iff: for all a1, a2 ∈ A and λ ∈ R

φ(a1 +A a2) = φ(a1) +B φ(a2), and φ(λ ·A a1) = λ ·B φ(a).

We say that the two vector spaces are isomorphic as vector spaces, denoted A ∼=vec B.
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Definition. [Lie Algebra Isomorphism] Let (g, [, ]g) and (h, [, ]h) be two Lie algebras. Then
we call the map φ : g → h a Lie algebra isomorphism if it is a vector space isomorphism
and, for all g1, g2 ∈ g

φ([g1, g2]g) =
[
φ(g1), φ(g2)

]
h

holds.

1.5.1 SO(3) & SU(2)

We can now addressed a subtle wording used above: in Remark 1.5.1 we said the structure
constants almost capture all of the properties of the associated Lie group. Why almost? Well
we have already seen that the structure constants for SO(3) are εijk. Well direct calculation
shows that the Pauli matrices, Equation (1.10), also obey

[σi, σj ] = εijkσk.

So so(3) and su(2) have the exact same structure constants! This tells us that the Lie algebras
are isomorphic? Indeed we can construct the isomorphism explicitly as

φ : su(2)→ so(3)

σi 7→ Ti.

This doesn’t necessarily seem like a bad thing, until we notice that the Lie groups SO(3)
and SU(2) are not isomorphic! So we see two distinguishable Lie groups have the same Lie
algebra.

This particular case is very well known and you can show that SO(3) is actually what is
known as a double cover of SU(2). I will not explain what this means here, but it is covered
in Chau’s notes, so the interested reader is directed there.

1.6 What On Earth Is Going On?

Ok, so that was quite a dense lecture with lots of definitions, so let’s just have a little recap as
to what on Earth we’re doing. We want to study the symmetries of physics because they’re
very powerful and give us important results. We claim that continuous groups are related to
symmetries (more on this next lecture). So we define some of our favourite matrix groups.
We then see that these are quite hard things to study so we look for an easier structure to
study. We claim that Lie algebras associated to Lie groups contain (almost) all the interesting
information about the Lie group. We therefore decide to use the Lie algebras, because they
are vector spaces and so we can add different elements together and scale them. We also have
a basis into which we can decompose elements. These are very nice properties to have. It
only took us 14 pages to say that.



2 | Representations

We started this course saying that groups are important to particle physicists because they
are related to symmetries, but we are yet to actually give justification for this claim. We shall
hopefully give clarity of this point in this lecture.

2.1 Representations Of Lie Groups

Recall that symmetries in quantum mechanics (QM) correspond to unitary operators acting
on the Hilbert space:

U : |ψ〉 → U |ψ〉 , and U : 〈ψ| → 〈ψ|U †.

We require that the operators are unitary because the physically meaningful thing in QM are
probabilities, which always appear as inner products. So if the operator U corresponds to
some symmetry of the system the probability shouldn’t change and so we have

〈ψ|ψ〉 = 〈ψ|U †U |ψ〉

and so we need U †U = 1. Furthermore, the operator must respect the symmetry group’s
properties. For example, if we are considering the symmetry of rotations, if U represents this
symmetry then we know that the composition of two rotations is a rotation

R(ϕx2 , ϕy2 , ϕz2)R(ϕx1 , ϕy1 , ϕz1) = R(ϕx3 , ϕy3 , ϕz3),

and so the corresponding operator must satisfy

U(ϕx2 , ϕy2 , ϕz2)U(ϕx1 , ϕy1 , ϕz1) = U(ϕx3 , ϕy3 , ϕz3).

In the mathematical lingo, we say that the operators form a representation of the symmetry
group. Let’s be more precise.

Definition. [Representation Of Lie Group] Let G be a Lie group of dimension n and V
be a real vector space of the same dimension. Then we obtain a representation of G on V
by prescribing an invertible, smooth map D : G→ GL(n,R) such that: for all g1, g2 ∈ G

D(g1 • g1) = D(g1) ·D(g2), and D(e) = 1d, (2.1)

where the · is matrix multiplication. We call the vector space V the representation space.
We can extend this definition to C trivially.

16
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Notation. From now on we will drop the · for matrix multplication and assume it is understood
implictly.

Exercise

Show that Equation (2.1) implies

D
(
g−1
)

=
[
D(g)

]−1
, (2.2)

where the left-hand side −1 means the inverse element in the group and the right-hand
side −1 means the matrix inverse.

Remark 2.1.1 . In fact the above definition of a representation is not as general as possible; all
we require is that D be a group homomorphism. That is it maps elements of the Lie group
to linear maps acting on the representation space that respect the group structure, i.e. obey
Equation (2.1) with · now corresponding to composition of maps. It is true that matrices are
such maps, however not all such maps are matrices. For almost all of this course, though, we
will consider matrix representations and so work off the above definition. I say almost because
later we will consider something called the adjoint representation of Lie algebras, which is not
a matrix representation but is a linear map. However even in this case we will show how we
can write it as a matrix.

Proposition 2.1.2. If D(g) is a representation of G of dimension n on V then so is

D̃(g) := SD(g)S−1,

where S is a constant, invertible matrix. We say that D(g) and D̃(g) are equivalent.

Proof. We just need to show it obeys Equation (2.1). Firstly we have

D̃(g1 • g2) := SD(g1 • g2)S−1

= SD(g1)D(g2)S
−1

= SD(g1)S
−1SD(g2)S

−1

=
(
SD(g1)S

−1)(SD(g2)S
−1)

= D̃(g1)D̃(g2),

where we have used the fact that D(g) is a representation, inserted 1n = S−1S and used the
associativity of matrix multiplication.

Secondly we have

D̃(e) := SD(e)S−1 = S1nS
−1 = SS−1 = 1n,

where again we have used that D(g) is a representation.

Definition. [Unitary Equivalence] Let D(g) and D̃(g) be equivalent representations of G
on V . Then if we can choose S to be unitary then D(g) and D̃(g) are said to be unitarily
equivalent.



LECTURE 2. REPRESENTATIONS 18

Remark 2.1.3 . It is common to refer to two equivalent representations D(g) and D̃(g) that
are not unitarily equivalent as unitarily inequivalent.

Definition. [Unitary Representation] Let G be a Lie group with representation map D.
If D(g) is unitary for all g ∈ G then we say the representation is unitary.

2.2 Representations of SU(n)

The main group we are going to be considering in representing is SU(n), Equation (1.2). It
is important to note that the idea of a representation holds for a general Lie group. That
is we do not need to only consider matrix Lie groups, as we are in these notes. The idea of
a representation is to convert the group into a set of matrices, as we know how to calculate
the action of a matrix on a vector space (which we just write as a column matrix). However
SU(n) is already a matrix group and so we don’t really need to do anything to it. But first a
comment on notation
Notation. We will denote the elements of a matrix using indices. We will adopt the convention
that the contravariant (i.e. upper) index tells us the row, and the covariant (lower) index tells
us the column. For an explicit example, let U be an n× n matrix, then

U =


U1

1 U1
2 ... U1

n

U2
1 U2

2 ...
...

...
...

...
...

Un1 Un2 ... Unn

 .

2.2.1 Fundamental & Antifundamental Representations

As we have just said, SU(n) already has the properties of a representation, that is it’s already
a matrix group and obeys the properties Equation (2.1). We can therefore just let D be the
identity map. This is known as the fundamental representation.

Definition. [Fundamental Representation Of Lie Group] Let G be a matrix Lie group.
Then we define the fundamental representation of G over V simply as

D(U) = U. (2.3)

We can define it via its action on an element φ ∈ V :

D(U) : φ 7→ Uφ = U ijφ
j . (2.4)

There is another important representation of matrix Lie groups related to the fundamental
representation. We define it below.

Definition. [Antifundamental Representation Of Lie Group] Let G be a matrix Lie group.
Then we define the antifundamental representation or conjugate representation of G over
V as

D(U) = U, (2.5)
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where the bar denotes complex conjugation. For bookkeeping (i.e. comparison to the
fundamental rep.) we denote the vector transforming in the antifundamental representation
with a lower index. That is, for φ ∈ V we write

D(U) : φ 7→ Uφ = (U †)j
k
φk. (2.6)

Note that the dimension of the fundamental representation and antifundamental repre-
sentation agree. This tells us their representation spaces have the same dimension, but we
think of them as transposes (i.e. we turn a row index into a column index, φk → φk). For
the following we shall denote the latter vector space as V . This does not mean the complex
conjugate of V but simply that we lower the index. An example is given below. An interesting
question is "are the fundamental and antifundamental representations equivalent?" We will
return to this question later.

Remark 2.2.1 . Note in Equation (2.6) we used

(U †)j
k

= Uk
j

as the Hermitian conjugate is both complex conjugation and transpose.

Exercise

Prove that the antifundamental representation is in fact a representation. That is show
Equation (2.5) satisfies Equation (2.1).

There is another representation we will use. This one might seem a bit boring, but it will
actually prove useful later when discussing Young-Tableauxs, so bear with it.

Definition. [Trivial Representation] Let G be a Lie group. Then we have the trivial
representation of G over V by the one-point map:

D(U) = 1 ∀U ∈ G. (2.7)

It simply acts as
D(U) : φ 7→ 1φ = φ, (2.8)

so it ‘does nothing’.

Remark 2.2.2 . Note that, unlike the fundamental/antifundamental representations, the trivial
representation does not require G to be a matrix Lie group.

2.2.2 Tensor Products of D & D

The way we defined the action of D and D looks a lot like the index notation for tensors. So
the obvious question is "can we take tensor products of these?" The answer is, of course, yes
because the tensor product of two matrices is well defined. We define the representation space
of this tensor product construction in the usual manner for the tensor product of vectors. That
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is we give φ one upper index for every D and one lower index for every D. The dimension of
the representation (and therefore also the representation space) is given by nd+d, where n is
the dimension of D/D, d is the number of Ds and d is the number of Ds. To help clarify this
let’s give a couple examples.

Example 2.2.3 . Let D be the n-dimensional fundamental representation of the Lie group G
over V . Then define DT := D⊗D⊗D. Then it acts on vectors in φ ∈ V ⊗ V ⊗ V . We tend
to denote its action in terms of indices as follows:

DT (U) : φijk 7→ U ii′U
j
j′
(
U †
)k′

k
φi
′j′
k′ .

The dimension of the tensor product representation, DT , is n3. We haven’t actually shown
that this is in fact a representation. This is the content of the next exercise.

Exercise

Show that DT defined above forms a representation. That is shows it obeys Equa-
tion (2.1). Hint: Note that 1ij = δij. The other property is a bit trickier to see. Just
write down the action of D(UV ) on φijk, expand (UV )ij = U ikV

k
j and then use the

fact that you can move around index terms freely.a

aThis hint might be more cryptic then helpful. If that’s the case and you still can’t do it, feel free
to email me. It’s actually not hard to show, but difficult to give much more of a hint without doing
the question.

There is a useful trick to notice that can save us a lot of time when we have contracted
indices. As with tensors in GR, indices that are contracted (i.e. in T ijSj , j is contracted)
are called dummy indices and do not transform. This comes from the fact that covariant and
contravariant indices transform in exactly the opposite way. We have a similar thing here
when we consider the fundamental and antifundamental representations of SU(2). We leave
the proof of this as an exercise below.1

Exercise

Show that
φjkk := φj`kδ

k
`

transforms in the fundamental representation. That is

DT (U)φjkk = U jj′φ
j′k

k = D(U)φjkk.

Hint: You will need to use the fact that we’re considering SU(n) and so U †U = 1.

2.3 Reducible & Irreducible Representations

The last exercise shows that some tensor product constructions don’t actually give rise to
anything new, and we can essentially consider just the action of one part of it independently.

1If you hate these last two exercises, blame Dr. Dorigoni not me... They’re exercises in his notes and I
don’t want to put the answers here for obvious reasons. If you are stuck with either of them, please feel free
to email me and I can explain.
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In other words, it appears we can ‘reduce’ complicated constructions into more bite size bits
and deal with them one by one. If we can do this, we say the representation if reducible.

Definition. [Reducible Representation] A representation of a Lie group,2 D, of dimension
n is called reducible if it is equivalent to representation of the form

SD(g)S−1 =

(
A(g) C(g)

0 B(g)

)
for all g ∈ G.

Remark 2.3.1 . In the definition above, the matrix C need not be a square matrix, all we
require is that the complete matrix on the right-hand side is n× n (otherwise it wouldn’t be
equivalent to D). For example We could have

A ∈MC
d1×d1 , B ∈MC

d2×d2 , and C ∈MC
d1×d2 .

This would give n = d1 + d2.

Definition. [Completely Reducible] A reducible representation is said to be completely
reducible if C(g) = 0 for all g ∈ G, i.e.

SD(g)S−1 =

(
A(g) 0

0 B(g)

)
. (2.9)

There is an alternate way we can write the condition of reducible. Note that the repre-
sentation space of a reducible representation will have an invariant subspace. That is if we
set the bottom d2 entries of the column matrix of φ ∈ V to 0 we get(

A C
0 B

)(
α
0

)
=

(
Aα
0

)
,

where α has d1 entries. We can write this mathematically as follows.

Definition. [Invariant Subspace] Let D be a representation of a Lie group G on V . Then
we call the subspace U ⊂ V an invariant subspace if for all g ∈ G and u ∈ U

D(g)u ∈ U.

Now note that if a representation is completely reducible then the representation space
consists exactly of 2 separate invariant subspaces. That is,(

A 0
0 B

)(
α
β

)
=

(
Aα
Bβ

)
,

and so α and β never talk to each other. We can therefore decompose V into a direct sum of
its invariant subspaces, in this case

V = a⊕ b,
where α ∈ a and β ∈ b with dimV = dim a+ dim b = d1 + d2.

We can therefore write the condition for completely reducible in a nice mathematical
formulation. First we need the definition of an irreducible representation.
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Definition. [Irreducible Representation] Let D be a representation of a Lie group3 G on
V . We say that this representation is irreducible, or more simply an irrep, if V has no
non-trivial4 invariant subspace of any equivalent representation of D.

Definition. [Completely Reducible (Direct Sum)] Let D be a representation of a Lie group
on V . Then we call D completely reducible if it can be written as a direct sum of irreps:

D(g) = A(g)⊕B(g). (2.10)

This acts on V = a⊕ b as
D(g)V = A(g)a⊕B(g)b.

Example 2.3.2 . In the last exercise (about contracted indices) we have

DT = D ⊕ 1⊕ 1,

where 1 is the trivial representation.

Proposition 2.3.3. Let D be a completely reducible representation. Then the dimension of
D is equal to the sum of the dimension of the irreps in the direct sum.

Theorem 2.3.4 (Maschke). If a unitary representation is reducible then it is also completely
reducible.

Proof. Let D be our representation of G over V with dimension n. As D is reducible, it has
an invariant subspace of V . Let V1 ⊂ V be this invariant subspace with dimension d1. Then,
as V is a vector space, we can define a basis{

e1, ..., ed1 , ed1+1, ..., ed1+d2
}
,

where n = d1 + d2. We are free to choose this basis such that {e1, ..., ed1} is a basis for V1.
Define the subspace spanned by {ed1+1, ..., ed1+d2} by V2. We see straight away that V1 and
V2 are orthogonal.

Now because V1 is an invariant subspace we know every v1 ∈ V1 satisfies

D(g)v1 ∈ V1,

and so can be decompose it in the basis {e1, ..., ed1}. The inner product with an arbitrary
element v2 ∈ V2 must vanish by orthogonality, i.e.(

D(g)v1, v2
)

= 0.

This holds for all elements g ∈ G and so in particular holds for g−1 ∈ G. Now use the property
of inner products: (

D(g−1)v1, v2
)

=
(
v1,
(
D(g−1)

)†
v2

)
.

Next use the fact that D is unitary and so(
D(g−1)

)†
=
(
D(g−1)

)−1
= D(g),
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where the last line comes from Equation (2.2) along with the fact that the inverse in the group
is unique (i.e. (g−1)−1 = g). Putting this together we get(

v1, D(g)v2
)

= 0,

which tells us
D(g)v2 ∈ V2,

and so V2 is an invariant subspace. Finally using the fact that V1 and V2 completely span V
we have

V = V1 ⊕ V2,

and so we can decompose D in a similar manner.

This theorem is incredibly powerful because it tells us that for SU(n) the only thing we
need to consider is irreducible representations and their direct sums. This massively simplifies
things.

Remark 2.3.5 . Note also for SU(2) Maschke’s theorem allows us to stop distinguishing be-
tween just reducible and completely reducible. We shall therefore just say reducible (as it’s
one less word).

Lemma 2.3.6. Let D be a representation with equivalent representation D̃(g) = SD(g)S−1.
Then D is reducible if, and only if, D̃ is reducible.

Exercise

Prove the above Lemma.

Remark 2.3.7 . Basically what you end up showing here is the same as showing that
the equivalence of representations forms an equivalence relation (i.e. all the square box
notation I was using in my proof that Zn is a group). This gives further justification
of me saying its worth learning about equivalence classes.

2.3.1 Symmetric ⊕ Antisymmetric

People familiar with GR will probably know that you can decompose any 2 index tensor into
a sum of its symmetric and antisymmetric parts. This subsection aims to show you can do
the same thing for the tensor product of two representations.

Let’s consider the tensor product of two fundamental representations.

DB(U) = (D ⊗D)(U) : φij 7→ U ii′U
j
j′φ

i′j′ .

What the comment at the start of this subsection is saying is that we want to show that

φ(ij) :=
1

2

(
φij + φji

)
(symmetric),

φ[ij] :=
1

2

(
φij − φji

)
(antisymmetric).
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are invariant subspaces, and so we can decompose DB into a direct sum

DB = DS ⊕DA,

where

DS(U) : φij 7→ 1

2

(
U ii′U

j
j′ + U jj′U

i
i′
)
φi
′j′

DA(U) : φij 7→ 1

2

(
U ii′U

j
j′ − U jj′U ii′

)
φi
′j′ .

It is easy to see that φij = φ(ij) + φ[ij], so we just need to show that they are invariant
under the action ofD. We show this result for the symmetric case and leave the antisymmetric
case as an exercise.

Denote the symmetric/antisymmetric parts of V by VS/VA respectively. We need to show
that

DS(U)φS ∈ VS , and DAφA = 0

for all φS ∈ VS and φA ∈ VA. The general elements of VS/VA are given above, so direct
calculation gives

DS(U)φS =
1

4

(
U ii′U

j
j′ + U jj′U

i
i′
)
φi
′j′ +

1

4

(
U jj′U

i
i′ + U ii′U

j
j′
)
φj
′i′

=
1

4

(
U ii′U

j
j′ + U jj′U

i
i′
)
φi
′j′ +

1

4

(
U ii′U

j
j′ + U jj′U

i
i′
)
φj
′i′

=
1

4

(
U ii′U

j
j′ + U jj′U

i
i′
)(
φi
′j′ + φj

′i′
)

=
1

2
U ii′U

j
j′
(
φi
′j′ + φj

′i′
)
,

which is symmetric in i ↔ j, and so is an element of VS . Now consider the action on an
antisymmetric element: the only thing that will change is the sign between the two terms on
the first line and so the same calculation will result in

DS(U)φA =
1

4

(
U ii′U

j
j′ − U jj′U ii′

)(
φi
′j′ + φj

′i′
)

= 0,

which is the desired result.
Exercise

Show the analogous calculation for DA(U).

This means we can express DB(U) as

DB(U) =

(
DS(U) 0

0 DA(U)

)
.

Let’s just check that dimensions work out. We said that the dimension of the tensor product
of representations was the product of the dimensions. This gives (assuming dimD = n)

dimDB = n2.
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Now recall that we said the dimension of a Lie matrix group is equal to the number of
free parameters in the matrix. The fundamental representation doesn’t do anything to the
matrices, and so it’s dimension is also given by the number of free parameters. DS(U)/DA(U)
are symmetric/antisymmetric n× n matrices, and so have dimensions

dimDS =
n(n+ 1)

2
, and dimDA =

n(n− 1)

2

adding these gives
dimDS + dimDA = n2 = dimDB,

which is exactly what we wanted.

Remark 2.3.8 . Note there was noting special about us using the tensor product of two fun-
damental representations. A completely analogous calculation also holds for

DB = D ⊗D, DC = D ⊗D, and DC = D ⊗D.

2.4 Schur’s Lemma

We have just invested a considerable amount of time and effort in obtaining a irreps, but
any sensible person would ask "why do we care about them?" Well we have already given a
reasonable answer above (the idea that, for unitary representations, everything is described
in terms of irreps), however there is a physical answer which might be more satisfying to us
physicists. It comes in the form of a famous Lemma.

Lemma 2.4.1 (Schur’s Lemma). Let D be an irrep of G over V . Then if there exists a matrix
H such that for all g ∈ G

[H,D(g)] = 0 =⇒ H = λ · 1, (2.11)

where λ ∈ C.5

Proof. Let v ∈ V be an eigenvector of H with eigenvalue λ,6 then if H commutes with D(g)
then

H
(
D(g)v

)
= D(g)Hv = λ ·

(
D(g)v

)
.

This tells us that D(g)v is also a eigenvector of H with the same eigenvalue. This is true for
all g and so we conclude that the eigenspace Vλ is an invariant subspace of D (otherwise we
would get a different eingenvalue with H). But D is a irrep so it has no non-trivial invariant
subspaces, and because the eigenspace is not empty we are forced to conclude that Vλ = V ,
so every element in V is an eigenvector of H with eigenvalue λ. This is just the statement
that H = λ · 1.

So why is this a nice physical answer to our question at the start of this section? Well
recall that any exact symmetry should commute with the Hamiltonian. So for a group G to
be a symmetry, we require

[H,D(g)] = 0 ∀g ∈ G.
5Or whatever the field of the vector space is.
6Note every matrix has at least one because det(B − λ · 1) = 0 has a solution.
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Schur’s Lemma therefore tells us that the Hamiltonian acts as E ·1 on an irrep of a symmetry
group G. In fancier language: states in an irrep of an exact symmetry group form a multiplet
with degenerate energies. This is a very powerful statement, because recalling that small
equation of Einstein’s, E = mc2, we see that states that are connected by an irrep of an exact
symmetry group have the same mass! This is the reason why an electron and a positron have
the same mass. It is a fact that the dimension of the irrep corresponds to the number of terms
in the multiplet,7 and so if we can find an irrep of dimension n that commutes with H we
instantly know that there are n particles with equal mass.

Now if that isn’t a physically compelling argument for why irreps are worth studying, then
I’m sorry but you’re never going to be convinced.

7Check you understand why this is the case.



3 | Young-Tableaux

In the last lecture we gave arguments for how useful it is to decompose our tensor product
of representations into a direct sum of irreps. We gave some explicit examples by finding
invariant subspaces. As we saw this took a reasonable amount of work for the two index
tensor and we basically only got the answer because we had an idea from GR. It seems like
we’re doomed when it comes to considering objects with more indices. For example, as we
will show soon, the following decomposition is not trivial to see

φ(ij)ϕk =
1

3

(
φ(ij)ϕk + φ(ik)ϕj + φ(jk)ϕi

)
+

1

3

(
2φ(ij)ϕk − φ(jk)ϕi − φ(ik)ϕj

)
. (3.1)

These two terms are invariant subspaces of D⊗D⊗D. The first term is maybe not too hard
to guess, its just the fully symmetric φ(ijϕk), however the second term doesn’t have any nice
easy to guess property. Sure it is symmetric in i↔ j, but the exchange j ↔ k gives

2φ(ik)ϕj − φ(jk)ϕi − φ(ij)ϕk.

The middle term hasn’t changed at all but the other two have changed sign and factors of 2.
A similar thing happens for i↔ k.

So what are we to do? Well of course we could go via trial and error, but that’s not
fun. Luckily a brilliant mathematician, called Alfred Young, swoops in and saves the day.
He developed a rather remarkable pictorial way to find the decomposition into direct sums in
1990. The pictures even allow us to calculate the dimensions of the irreps. These diagrams
are called Young-Tableaux and will be the study of this lecture.

Notation. We shall switch to a notation where capital N is the N in SU(N) and little n is
the number of indices. This is just done to make it easier for me to work from Dr. Dorigoni’s
notes (which do this).

3.1 The Rules

A Young-Tableaux is a pictorial representation to characterise irreps SU(N)1 and correspond
to a particular symmetrisation and antisymmetrisation procedure. It will generate the irreps of
a tensor product and it will also give us the dimensions of each irrep. The pictures correspond
to drawing boxes. Of course there are rules on how to construct such diagrams, which we lay
out below.

1You can adjust them for other groups like SO(n), but in this course we will only be interested in SU(N).

27
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(i) Each term must have the same number of boxes as there are free indices (i.e.
not ones summed over).

(ii) Boxes in the same row correspond to symmetrised indices.

(iii) Boxes in the same column correspond to antisymmetrised indices.

(iv) Each row must contain no more boxes than the one above.

(v) The rows are aligned to the left.

(vi) The number of rows must not exceed N for SU(N).

Remark 3.1.1 . Note condition (vi) makes perfect sense given condition (iii): rows in the same
column are antisymmetrised and for SU(N) the range of the indices is i = 1, ..., N . If we have
(N+1) indices then at least two of them will have to be the same, and so if we antisymmetrise
them all, this term vanishes. For example, for N = 2, an object with n = 3 indices will vanish
if fully antisymmetrised, as we require

φijk = −φikj = −φkji

but if we set i = 1 and j = 2 then either k = 1, and so the second equality gives 0, or k = 2
and so the first equality gives 0. A similar argument is made for any other combination for
ijk.

Let’s give the pictorial version of the conditions above for clarity, then we’ll give some
examples.

(i) This one is pretty self explanatory, but here’s an example

This corresponds to an object with n = 12 indices.

(ii) The n index fully symmetrised object φ(i1...in) corresponds to

...︸ ︷︷ ︸
n

(iii) The n index fully antisymmetrised object φ[i1...in] is similar to the above one but now
the boxes are vertical.
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(iv) As we have drawn in (i), each row has no more boxes than the one above it. Note we
can have the same number of boxes, as with the last two rows in (i), but a diagram like

would not be valid.

(v) Again as we have done in (i), all the rows are aligned to the left, so a diagram like

would not be valid, both because the top row has ‘gaps’ and because the second row
starts shifted in.

(vi) We already explained why this is the case in Remark 3.1.1, but pictorially we can write

1

2
...

...
N + 1

= 0.

It is worth clarifying what these pictures actually tell us. The number of boxes gives us
the number of indices on the elements in our representation space, and the way the boxes
are ordered tells us what the invariant subspaces are. So each diagram tells us an invariant
subspace, and corresponds to one term in the direct sum of irreps.

We then take the direct sum of all the different diagrams (i.e. all the different invariant
subspaces) and so we obtain the full action of the representation on the representation space.
So these diagrams tell us both what the vector space V is (i.e. it is the span of the objects
whose indices are given by the diagrams) and the decomposition of the representation (as we
know the invariant subspaces).

3.2 Fundamental & Antifundamental

The first, and essentially the building block of all Young-Tableaux, is the fundamental. We
give it here as a definition.

Definition. [Fundamental Young-Tableaux] The fundamental Young-Tableaux is simply a
single box:

= φi 7→ U ijφ
j .
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We will see later that there is a nice relation between the fundamental and antifundamental
Young-Tableaux for SU(N). So now we introduce a nice notation for the antifundamental
Young-Tableaux in terms of a definition.

Definition. [Antifundamental Young-Tableaux] The antifundamental Young-Tableaux is
drawn as a box with a bar over it:

= φi 7→ (U †)j iφj .

3.3 Tensor Products

So how do we write tensor products of Young-Tableaux in terms of direct sums? Well let’s
give an example here, and then explain why it’s correct. We saw (or at least claimed) in
Equation (3.1) that we can decompose the tensor product of a 2-index symmetric object with
a fundamental object as the direct sum of the fully symmetric object and something that was
symmetric in ij but some non-trivial antisymmetry with k. As Young-Tableaux this is

⊗
=

⊕
(3.2)

The first term on the right-hand side, by condition (ii), is just φ(ijϕk), while the other term
corresponds to the funny property. Note this terms makes some kind of sense: we have two
indices symmetrised and one with some antisymmetry property.

So how do we arrive at this expression? Well the attentive person might realise that all
we have done is put the fundamental box in the only two allowed places: on the end of the
two-boxes and below it. This is essentially the correct idea, and we will give a more detailed
description next lecture, including what to do if you have more than one box to ‘distribute’.

How do we see that the last term in the above Young-Tableaux corresponds to the term in
Equation (3.1)? Well we need to explain the procedure of symmetrisation/antisymmetrisation
in a Young-Tableaux. It goes as follows: for a given Young-Tableaux diagram

1. Assign indices to the boxes, starting at the top left, working along the row and then
down to the next column.

2. Apply the permutation operator
P =

∑
r

p,

where r indicates the row number and p permutes the indices in a row.

3. Apply the graded permutation operator

Q =
∑
c

sgn(q)q,

where c indicates the column number, q permutes the indices in a column, and sgn(q)
is the sign of the permutation.2

2A permutation q is even (has sgn(q) = +1) is it can be written as the product of an even number of
transpositions (something that switches only two indices). Otherwise it is odd (has sgn(q) = −1).
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Let’s show how this gives the above result.3

1. First we have

ψijk =
i j

k

2. Then we permute along the rows: i.e. symmetrise i and j (k has nothing else in its row
so it’s left alone)

P
(
ψijk

)
= ψijk + ψjik =

i j

k
+

j i

k

3. Then we graded permute in the columns: the permutations that do nothing obviously
have positive sgn, while both permutations i ↔ k and j ↔ k correspond to one trans-
position and so have negative sgn. This gives

Y
(
ψijk

)
:= (Q ◦ P )

(
ψijk

)
=
(
ψijk − ψkji

)
+
(
ψijk − ψikj

)
.

This is exactly (apart from the factor 1/3) the second term on the right-hand side of
Equation (3.1).

Remark 3.3.1 . It turns out that in SO(N) the contraction of indices will allow for further
decomposition into irreps. We will not be concerned with this fact in this course, as we focus
on SU(N).

3.4 Dimensions From Young-Tableaux

As we said at the beginning of this lecture, Young-Tableaux not only give us a way to decom-
pose the tensor product of the representations into a direct sum of irreps, but it also gives us
a way to find the dimension of the irreps. We give the prescription of how to do this here.
This result is highly non-trivial to see, and we do not provide a proof of it but simply request
you believe it’s true.

First we define the Hook of a box in a Young-Tableaux.

Definition. [Hook In Young-Tableaux] The Hook of a box X in a Young-Tableaux is the
integer given by summing over the number of boxes directly to the right of X, plus the
number of boxes directly below X, plus one for X itself.

Example 3.4.1 . Let’s give an example of a Hook. Consider the Young-Tableaux

X
Y

3We ignore all the factors of 1/2 etc that comes from symmetrisation etc.
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We have

Hook(X) = 3
right

+ 3
below

+ 1
self

= 7, and Hook(Y ) = 3
right

+ 2
below

+ 1
self

= 6.

Claim 3.4.2 . The dimension of a Young-Tableaux of SU(N) is given by the following proce-
dure.

1. Put N in the top left box.

2. Add 1 as you move along the row (so second box has N + 1, third has N + 2 etc).

3. Minus 1 as you move down a column (so second row, first column has N −1, but second
row second column has N — as you add one as you move across row)

4. Multiply all these numbers together and divide by the product of all the Hooks.

5. The result is the dimension.

For clarity, we give a pictorial representation of how to associate the numbers to boxes
using the Young-Tableaux given in Example 3.4.1 for the case SU(5):

5 6 7 8 9

4 5 6 7

3 4 5

2 3

Remark 3.4.3 . Note condition (vi) for Young-Tableaux ensures that the dimension is positive
definite. That is you will never get 0 or a negative number in a box, as you would need N + 1
rows to get 0 and more rows to get a negative number.

Example 3.4.4 . Let’s find the dimension of the following Young-Tableaux for SU(6):

Writing the value of the Hook as a number in the box, we have

6 7 8 9

5 6

4 5

3

2

/ 8 5 2 1

5 2

4 1

2

1

=
6 · 7 · 8 · 9 · 5 · 6 · 4 · 5 · 3 · 2
8 · 5 · 2 · 1 · 5 · 2 · 4 · 1 · 2 · 1

= 1701,
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where the slash is meant to indicate a divide.4 This example highlights the power of Young-
Tableaux (imagine trying to find the dimension of a 10 index object with the above symmetri-
sation/antisymmetrisation).

Exercise

Use the above procedure to show that the dimensions of the decomposition Equa-
tion (3.1) works out. That is show that both sides of Equation (3.2) have the same
dimension. Hint: Recall that dim(A ⊗ B) = (dimA) · (dim b) and dim(A ⊕ B) =
(dimA) + (dimB).

3.5 Antifundamental Young-Tableaux From (N − 1)-Rows

3.5.1 Invariant Tensor

Let’s consider the specific case of a Young-Tableaux of SU(N) with exactly N rows. This
corresponds to a fully antisymmetrised object and has dimension

N
...
1

/ N
...
1

= 1.

This looks a lot like the Levi-Civita tensor. So what we’re looking at is something like

φ[i1...iN ] = ϕεi1...iN ,

where ϕ is just some scalar (it doesn’t transform under the representation).

Proposition 3.5.1. The Levi-Civita tensor is an invariant tensor under SU(N). That is,

(D ⊗ ...⊗D︸ ︷︷ ︸
N-times

)(U) : εi1....iN 7→ εi1...iN .

Proof. Just compute the action:

(D ⊗ ...⊗D)(U) : εi1...iN 7→ U i1j1 ...U
iN
jN ε

j1...jN = detUεi1...iN ,

where the second equality is a well known fact (see a linear algebra textbook). But detU = 1
for SU(N) and so we get the result.

This result tells us that the N -row Young-Tableaux corresponds to the trivial represen-
tation, and so in all future Young-Tableaux we can always ‘strip off’ this part of a diagram.
For example, if N = 4 we would replace

4Apologies for how pathetic it looks, I’m new to the Young-Tableaux package and don’t know how to make
a proper big slash yet.
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−→

Note that by doing this we will actually violate condition (i) in our Young-Tableaux procedure.
It is important to note that we are not saying that you remove the indices, but simply that
these indices will not transform, and simply come along for the ride. So in order to save
ourselves writing it down in every step, we simply ‘forget about it for now’.

Remark 3.5.2 . It turns out that SO(N) has more than one invariant tensor, and so you can
‘forget about’ more of the diagram. However, as with other SO(N) remarks, this won’t
concern us in this course.

3.5.2 Antifundamental

What about if we have (N − 1) rows? A similar calculation to the one above tells us that

dim

1

2
...

...
N − 1

= N .

What representation do we know that has dimension N? Well the fundamental of course (it’s
N/1 = N). The above Young-Tableaux isn’t the fundamental though, so what is it? A bit of
thought suggests the antifundamental. Let’s show this more concretely.

If we write the vector as
φ[i1...iN−1] = εi1...iN−1jΦj ,

then the transformation is as follows

(D ⊗ ...⊗D︸ ︷︷ ︸
N−1

)(U) : φ[i1...iN−1] 7→ (U i1j1 ...U
iN−1

jN−1)εj1...jN−1jΦj

= (U i1j1 ...U
iN−1

jN−1) · δji · ε
j1...jN−1iΦj

= (U i1j1 ...U
iN−1

jN−1) · (U †)jkU
k
i · εj1...jN−1iΦj

= (detU)εi1...iN−1k(U †)jkΦj ,

but the first part is just the invariant tensor from the previous subsection, and so we just get
a transformation in the antifundamental representation. So we have

1

2
...

...
N − 1

= . (3.3)

This tells us that, for SU(N), we don’t actually need to consider the antifundamental repre-
sentation in terms of Young-Tableaux, and we can get all irreps using just the fundamental.
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This is good because as we have defined the Young-Tableaux, we only ever used the funda-
mental representation! To emphasise, our Young-Tableaux construction gives us all the irreps
for SU(N).

3.6 List Of All Irreps

Now that we have a pictorial tool to list all of the irreps for a given SU(N), let’s list some
examples.

3.6.1 SU(2)

For SU(2) our invariant tensor is the Young-Tableaux

so we only need to consider one row. We therefore can list all the irreps as

Young-Tableaux Tensor Dimension

φi 2

φ(ij) 3

φ(ijk) 4
...

...
...

We can therefore characterise the Young-Tableaux by a single number, namely the number of
boxes.

Note that for SU(2) the fundamental and the antifundamental are the equivalent:

= .

This is obviously not true for any other SU(N).

3.6.2 SU(3)

For SU(3) we now have at most 2 rows, and have

= .

A general Young-Tableaux is of the form

1 ... ... q 1 ... ... p

... ... ... ...

... ...

,



LECTURE 3. YOUNG-TABLEAUX 36

and so we can simply characterise an arbitrary Young-Tableaux for SU(3) by the double (p, q),
which tells us the number of fundamental and antifundamental, respectively, indices.

Remark 3.6.1 . These objects can be written as (p, q) tensors that are fully symmetric in all p
contravaiarnt indices, fully symmetric in the q covariant indices are are completely traceless,
i.e.

φ
(i1...ip)
(j1...jq)

with φ
ki2...ip
kj2...jq

= 0.

We do not explain why, but just state that this is true.

3.6.3 SU(4) & Higher

It is not so easy to characterise a general Young-Tableaux for SU(4) and higher. Simply
drawing the Young-Tableaux is most compact way to write down a general tensor.

3.7 Bold Face Dimension Notation

There is a short hand notation to writing the irreps of a Young-Tableaux by its dimension. We
simply use a bold font number, and place a bar over it if it’s antifundamental. For example
the fundamental and antifundamental representations of SU(N) are written as N and N,
respectively.

Example 3.7.1 . For SU(5), we can write the Young-Tableaux

⊗
=

⊕
as

5⊗ 5 = 15⊕ 10.

Note that 5×5 = 25 = 15+10, so you can always check to see if your answer at least adds up
correctly. It is standard convention to list the numbers in decreasing value as we have done.

Exercise

Write the above Young-Tableaux in bold face notation for SU(3). Hint: Notice some-
thing special about the above diagram for SU(3).

Exercise

Write the Young-Tableaux Equation (3.2) in the bold face notation for SU(6). Hint:
You should get a total dimension of 126.

Exercise

Verify that 8⊗ 8 for SU(3) corresponds to

⊗
.

Comment: We will use this result next lecture, so please actually do this.
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SU(N)

Ok so we have seen (or at least argued) the importance of irreps to particle physics, and have
become comfortable with drawing Young-Tableaux diagrams. We now need to return to the
question asked after Equation (3.2). Reworded the question is "given the Young-Tableaux of
two irreps, Dr1 and Dr2 , how do we write their tensor product as a direct sum of irreps?" In
other words, how do we take tensor products of Young-Tableaux diagrams? The answer is a
procedure known as the Littlewood-Richardson (or Clebsch-Gordan) rules.

4.1 Littlewood-Richardson Rules

As we did above, let’s label our two irreps by Dr1 and Dr2 , then we find the tensor product
Dr1 ⊗Dr2 via the following procedure.

(i) Draw the Young-Tableaux for Dr1 and Dr2 .

(ii) Label the rows of Dr2 with letters, as indicated in the following example

a a a a

b b

c

(iii) Add the boxes of Dr2 to Dr1 one at a time starting with the first row acording
to these following rules:

(a) Augmented Young-Tableaux must be a valid Young-Tableaux.
(b) Boxes with the same label (a, b etc) cannot be in the same column (as they

are symmetrised in Dr2 so if we antisymmetrise the result vanishes).
(c) Two or more Young-Tableaux with the same shape and the same labels

count as one diagram.
(d) Cancel columns with N rows (i.e. remove the invariant parts).
(e) At any given box position, define

na = number of as in the upper-right quadrant from this box,

37
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and similarly for nb etc. Then require na ≥ nb ≥ nc, and so remove
any diagrams that don’t obey this, i.e. the following diagram is not valid
because the red a has nb = 2 but na = 1.

a

b b

a a

This will probably seem highly cryptic, but it’s rather straight forward. Let’s give an
example.

Example 4.1.1 . Let’s consider the tensor product 8 ⊗ 8 in SU(3). You showed what this
corresponds to as Young-Tableaux at the very end of last lecture, so let’s just apply the
Littlewood-Richardson rules to find the decomposition.

The first a box gets distributed as

⊗ a a

b
=

(
a ⊕

a

⊕
a

) ⊗ a

b
.

Now we can consider each term on the right-hand side in turn. I will just finish off the first
term on the right-hand side and leave the other two as exercises. The only terms we’ll cancel
(i.e. won’t draw) are the ones that don’t make valid Young-Tableaux (e.g. 4 columns or more
columns then previous row). The rest we’ll explain at the end.

a
⊗

a

b
=

(
a a

⊕
a

a
⊕

a

a

)
⊗ b

=
a a b

⊕
a a

b
⊕

a a

b

⊕
a b

a
⊕

a

a b
⊕

a

a

b

⊕
a b

a

⊕
a

b

a

,

where each row of the calculation corresponds to one term in the brackets.
Ok so how do we cancel/simplify this? The following terms go because the red as violate

condition (e)
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a a b a b

a
and

a b

a

Then we can simplify these terms using condition (d)

a a

b

a

a

b

and
a

b

a

to become

a a
a

a
and

a

b
.

Note that the final two diagrams here are different diagrams because, although they have the
same shape, they don’t have the same label distribution.

So we’re left with

a
⊗

a

b
=

a a

b
⊕ a a ⊕

a

a b
⊕

a

a
⊕

a

b

Exercise

Finish the rest of the example and convert it into bold font notation to obtain

8⊗ 8 = 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1

Hint: If you have a Young-Tableaux where every column has N rows, then you write it
in bold font notation as 1. So in this question the 1 comes from a diagram of the form

.

4.2 Final Comment on Young-Tableaux

As we have seen, Young-Tableaux are a very neat and useful trick for the study of SU(N).
Other Lie groups, however, are more complicated. For example, for SO(N) the fundamental
representation acts as

ϕi 7→M i
jϕ

j ,

where M ∈ SO(N). The decomposition of the tensor product with two indices is not just the
symmetric plus antisymmetric. Indeed it turns out that the trace forms an invariant subspace,
and so our decomposition is

ϕiψj =
1

2

(
ϕiψj + ϕjψi

)
− 1

N
δijϕkψk︸ ︷︷ ︸

Symmetric Traceless

+
1

N
δijϕkψk︸ ︷︷ ︸
Trace

+
1

2

(
ϕiψj − ϕjψi

)
︸ ︷︷ ︸

Antisymmetric

.
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We can see that this is the case by showing that the δij is an invariant tensor under SO(N):1

δij 7→M i
i′M

j
j′δ

i′j′

= M i
i′M

j
i′

= M i
i′(M

T )i
′

j

= δij

where we have usedMMT = 1. This result would not have held for SU(N) because we would
need the Hermitian conjugate, not just the transpose.

4.3 Systematic Approach To Irreps

Recall that we can relate a Lie group to a Lie algebra via the exponential map. That is if U
is an element of the Lie group, then we can write it as U = eX , where X is an element of the
appropriate Lie algebra. The question is can we relate the representation of a Lie group to
the representation of a Lie algebra? Well first we need the definition of the representation of
a Lie algebra.

Definition. [Representation Of Lie Algebra] Let (g, [, ]) be a Lie algebra of dimension n.
Then we obtain a representation of the Lie algebra on V , by prescribing a Lie algebra
homomorphism, d. That is a map d satisfying: for all X,Y ∈ g and α, β ∈ C2

(i) Linearity; d(αX + βY ) = αd(X) + βd(Y ), and

(ii) d
(
[X,Y ]

)
= [d(X), d(Y )] = d(X) ◦ d(Y ) − d(Y ) ◦ d(X), where ◦ is the composition

as maps.

For the time being we shall assume our representations are matrices, in order to compare
to the stuff we’ve been saying for representations of Lie groups. We will actually deter from
this when we introduce the adjoint representation later.

Proposition 4.3.1. We can obtain a representation on the Lie algebra given one on the Lie
group, via the exponential map, defined via

D(eX) = ed(X), (4.1)

provided d is linear.

Proof. Let D be the representation of our Lie group. Then let

U = eX , and V = eY

be two arbitrary elements in the Lie group, with X and Y being elements of the corresponding
Lie algebra. Then we have

D
(
eX
)
D
(
eY
)

= ed(X)ed(Y ) = ed(X)+d(Y )+ 1
2
[d(X),d(Y )]+...,

1In SO(N) upper and lower indices aren’t different.
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where we have used the BCH formula. Then use the fact that D is a representation,

D
(
eX
)
D(eY

)
= D

(
eXeY

)
= D

(
eX+Y+ 1

2
[X,Y ]+...

)
= ed(X+Y+ 1

2
[X,Y ]+...).

Finally use the fact that d is a linear map to obtain

ed(X)+d(Y )+ 1
2
[d(X),d(Y )]+... = ed(X)+d(Y )+ 1

2
d([X,Y ])+...,

which gives us condition (ii).

Definition. [Equivalent Representations Of Lie Algebras] Let (g, [, ]) be a Lie algebra and
let d1 and d2 be two representations. Then we say d1 and d2 are equivalent if there exists
a constant matrix S such that

d2(X) = Sd1(X)S−1, ∀X ∈ g.

Definition. [Reducible Representations Of Lie Algebras] We say a representation d of a
Lie algebra is reducible if it is equivalent to a block diagonal matrix3. We can also define
it as the condition that it can be written as the direct sum of irreps:4 e.g.

d = da ⊕ db.

Proposition 4.3.2. Let D and D̃ be two equivalent representations of a Lie group, i.e.

D̃(g) = SD(g)S−1 ∀g ∈ G.

Then their associated Lie algebra representations, d and d̃, are also equivalent.

Proof. This proof relies on the fact that

(SAS−1)n = SAnS−1

for any matrix A. Simply consider the definitions:

D̃
(
eX
)

= SD
(
eX
)
S−1

ed̃(X) = Sed(X)S−1

= S
( ∞∑
n=0

(dX)n

n!

)
S−1

=

∞∑
n=0

(Sd(X)S−1)n

n!

= eSd(X)S−1
,

=⇒ d̃(X) = Sd(X)S−1 ∀X ∈ g.
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Exercise

Using the block diagonal matrix version for reducible representations of Lie groups,
Equation (2.9), show that reducible representations of Lie groups correspond to re-
ducible representations of Lie algebras. In other words, show

exp

((
A 0
0 B

))
=

(
eA 0
0 eB

)

Exercise

Show that unitary representations of Lie groups correspond to antihermitian represen-
tations of Lie algebras. That is[

D(g)
]†

= [D(g)]−1 ⇐⇒
[
d(X)

]†
= −d(X).

So how do the representations of Lie algebras act on the representation space? The answer
is

d(X) : ψi1...in 7→ Xi1
jψ

ji2...in +Xi2
jψ

i1j...in + ...+Xin
jψ

i1...in−1j (4.2)

We set the proof (for n = 2, 3) as an exercise here5

Exercise

If D(U) : φij 7→ U irU
j
sφ
rs find the action of the corresponding Lie algebra by putting

U ij = δij + εuij and considering O(ε) terms. Similarly write down the action of the
Lie algebra on φijk.

The important point about Lie algebras to understand is that, unlike Lie groups, they
are vector spaces and so they have a basis. Putting this together with the fact that the
representation map d is linear, we see that for Lie algebras we can find the entire representation
by simply knowing it for a basis! This is an extremely useful property. For example it makes
dealing with Schur’s Lemma much easier. Note, however, that because we do not require d
to be invertible it is not generally true that the representation algebra and Lie algebra have
the same dimension. That is, its possible that d maps two basis vectors to the same element
in the representation, which would give the representation a lower dimension then the Lie
algebra itself. There is always a privileged representation which is the Lie algebra itself, this
is the topic of the next section.

4.4 The Adjoint Representation

Definition. [Adjoint Representation] Let [g, [, ]) be a Lie algebra. Then the linear map

ad : g→ g

X 7→ ad(X),

5As it is set as one on Dr. Dorigini’s course, and on the off change someone is reading this while doing his
course I don’t want to just give the answer.
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defined via its action:
ad(X) : Y 7→ [X,Y ], (4.3)

is a representation, called the adjoint representation.

Exercise

Prove that the adjoint representation is indeed a representation. That is show that
ad(X)

(i) Is linear:
ad(X)(αY + βZ) = αad(X)(Y ) + βad(X)(Z).

(ii) Preserves the commutator:

adX([Y,Z]) = [adX(Y ), adX(Z)].

Remark 4.4.1 . Note the linearity condition above is linearity in the argument of ad(X), i.e.
in Y not in X itself. It is true that ad(X) is also linear in X (as the commutator is bilinear).
For this reason we could define the bilinear map

ad : g× g→ g

as the commutator. This is not a representation though as the representation only maps from
one copy of g. To be totally clear it is the whole ad(X) that is the representation, not just
ad.

Note that unlike the other representations we have considered so far, the adjoint represen-
tation does not give a matrix. It is just a linear map, which is all we need for a representation,
as stated way back in Remark 2.1.1. We can, though, extract a matrix form for the adjoint
representation as follows. We know that the representation is a vector space and has a basis,
{Xa}, and we know that the Lie bracket of two elements is an element itself. This just gives us
the structure constants, Equation (1.11). So we can use these structure constants to construct
a matrix. To be more clear, we have

ad(Xa) : Xb 7→ [Xa, Xb] = fab
cXc,

so as think of the adjoint representation in terms of the matrices

(Ta)b
c :=

(
ad(Xa)

)
b

c
= fab

c.

For a given a this is a dim g× dim g matrix.
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Exercise

Suppose that the structure constants of a Lie algebra g in a basis {Xa} are fabc. Now
switch to a new basis {X ′a}, related to the old one by X ′a = SbaXb, where Sba is a
nonsingular matrix. Show that in the new basis the structure constants are

f ′ab
c

= SpaS
q
b(S
−1)crfpq

r.

Comment: Again this is something taken straight from the problem sheets to Dr.
Dorigoni’s course. However I think it’s a useful exercise so have included it here.

4.4.1 Killing form

As we have said many times a Lie algebra is a vector space and this has given us many nice
results. However a Lie algebra is even nicer than this: it also comes with a natural inner
product.

Definition. [Killing Form] Let (g, [, ]) be a Lie algebra. Then we can define an inner
product, called the Killing form (or Cartan metric) by

B(X,Y ) := Tr
(
ad(X) · ad(Y )

))
, (4.4)

where ad(X) is the matrix representing X.

We can write the Killing form in components as

B(Xa, Xb) = Tr
(
[ad(Xa)ad(Xb)]c

e)
= Tr

(
[ad(Xa)]d

e[ad(Xb)]c
d)

= fad
cfbc

d

=: gab.

Note that gab = gba, which we expect from an inner product.

4.4.2 Casimir Operator

An important application of the Killing form is what is known as the Casimir operator.

Definition. [Casimir Operator] Let gab be the components of the Killing form for a Lie
algebra (g, [, ]). Then if the Killing form is invertible we can define

gab := (g−1)ab.

In any representation, d, we can then define the Casimir operator

Cd =

dim g∑
a,b=1

gab · d(Xa) · d(Xb), (4.5)

where {Xa} is a basis for the Lie algebra.
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It is a fact that the Casimir operator commutes with all elements in the representation.
As the Lie bracket is linear, we can write this as

[Cd, d(Xa)] = 0 ∀a ∈ {1, ...,dim g}.

This is a very powerful result; if d is an irrep then we know, from Schur’s Lemma, that

Cd = λ · 1.

Example 4.4.2 . As an example, consider su(2). Here the Killing form is

gab = −2δab. (4.6)

This is invertible, and we obtain

gab = −1

2
δab.

So here the Casimir is given by

C = −1

2

([
d(X1)

]2
+
[
d(X2)

]2
+
[
d(X3)

]2)
.

This tells you that whenever d is an irrep of SU(2) the Casimir is a multiple of the identity.
This is often written as

J2 = J2
1 + J2

2 + J2
3 = λ1,

to make the connection with the angular momentum of a particle. We will see this more in
detail soon.

Exercise

Prove Equation (4.6). Hint: Use

[Xa, Xb] =
∑
c

εabcXc

for su(2), where εabc is the Levi-Civita tensor.



5 | Systematic Approach To Finite Di-
mensional Irreps

We now want to give some systematic approach to getting the irreps of finite dimensional
su(N). We will consider su(2) and su(3).

5.1 su(2)

Recall that the Lie algebra (su(2), [, ]) is the set of 2 × 2, antihermitian,1 traceless matrices,
and the Lie bracket is the commutator. A basis for such matrices are the Pauli matrices,
Equation (1.10). We shall actually scale the matrices slightly, and use the basis

τ1 = −iσ1
2

=

(
0 −i/2
−i/2 0

)
,

τ2 = −iσ2
2

=

(
0 −1/2

1/2 0

)
,

τ3 = −iσ3
2

=

(
−i/2 0

0 i/2

)
.

(5.1)

The reason we use these is because now the commutation relation becomes

[τi, τj ] = εijkτk. (5.2)

This is a useful basis but there is a different one which makes connection with QFT easier,
which is something we ultimately want to do (as this is a course for particle physicists). Recall
that in QM and QFT we have raising and lowering (or ladder) operators which increase the
eigenvalues of a given operator. The question is, can we do something similar with su(2)?
The answer is yes,2 and is given by

E+ := iτ1 − τ2 =

(
0 1
0 0

)
,

E− := iτ1 + τ2 =

(
0 0
1 0

)
,

H := 2iτ3 =

(
1 0
0 −1

)
.

(5.3)

1Note we have actually changed convention here compared to Lecture 1, where we had Hermitian matrices.
2Otherwise I wouldn’t be saying all this

46
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Exercise

Show that
[H,E±] = ±2E±, and [E+, E−] = H. (5.4)

Remark 5.1.1 . Note that Equation (5.1) are complex matrices but Equation (5.3) are real
matrices. This might seem like a problem for the latter to be a basis, but we have to remember
that our underlying field is the complex numbers, so we can still span the whole space.

Ok, so now let’s consider a representation d. What form do our new basis elements take?
Well we note that H is unitary, so we can expect the representation d(H) be unitary too.
Now it’s a fact that any unitary matrix is diagonalisable.3 That is we can always find an
equivalent representation d̃(H) = Sd(H)S−1 such that we get a diagonal matrix. We shall
therefore always do this.

As d(H) is diagonal, we can construct the representation space such that each element
is an eigenvector of d(H). That is d(H) is a dim d × dim d matrix, so we can construct our
representation space as a dim d column matrix. This obviously smells a lot like QM, and so we
use bra-ket notation. As d(H) is unitary, it is Hermitian, and so we know the eigenvalues are
real. We shall also assume that these eigenvalues are unique, so we can label the eigenstates
by their eigenvalues. That is, we write

d(H) |k〉 = k |k〉 . (5.5)

So what about the action of E± on our states? Well, that’s an exercise.

Exercise

Show that
d(H)d(E±) |k〉 = (k ± 2)d(E±) |k〉 .

Hint: Using Equation (5.4).

The result of this exercise tells us that

d(E±) ∝ |k ± 2〉 ,

the question is "what are the proportionality constants?" Well we rescale our system such
that

d(E−) |k〉 = |k − 2〉 . (5.6)

So we just need to find the coefficient for d(E+). As the title of this lecture says, we want to
consider finite dimensional representations, and so we require there to be some bound on the
values of k. In particular we require that there is some maximum value, k = j, such that

d(E+) |j〉 = 0. (5.7)
3This is a consequence of something called the spectral theorem. For more details see Simon and my notes

on Dr. Schuller’s QM course, available on my blog site.
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We call this state the highest weight state. We can use this to find the action on a general
state. We get a recursion relation as follows: let d(E+) |k〉 = rk+2 |k + 2〉, then we have

d(E+) |k − 2〉 = d(E+)d(E−) |k〉
=
(
d(H) + d(E−)d(E+)

)
|k〉

= (k + rk+2) |k〉 ,

giving the relation

rk =

{
k + rk+2 k 6= j + 2

0 k = j + 2.

This is solved by
rj−2k = (k + 1)(j − k). (5.8)

To clarify,4 get the highest weight state by setting k = −1:

rj+2 = rj−2(−1) = (−1 + 1)(j + 1) = 0.

We see that we also have r−j = 0, which corresponds to the fact we must also put a lower
bound on the values of k. In terms of the lowering operator this is the statement that

d(E−) |−j〉 = 0. (5.9)

This gives us a weight ‘lattice’:

...
−j −j + 2 −j + 4 j − 4 j − 2 j

d(E+)

d(E−)

The conclusion we draw from this result is that for each value of j we have a (j + 1)-
dimensional irrep with basis elements

|j〉 , |j − 2〉 , ..., |−j + 2〉 , |−j〉 ,

which we can write as a column matrix explicitly as

|j〉 =


1
0
...
0

 , ... |−j〉 =


0
0
...
1

 .

Our matrices H,E± take the form5

d(H) =

j 0
. . .

0 −j

 , d(E−) =


0 0

1
. . .
. . . . . .

0 1 0

 d(E+) =


0 rj 0

. . . rj−2
. . . . . .

0 0

 .

4As this took me a few minutes to see.
5I wasn’t sure how to make the 0s big, but basically everything blank is a 0.



LECTURE 5. SYSTEMATIC APPROACH TO FINITE DIMENSIONAL IRREPS 49

Remark 5.1.2 . There is a nice way to convert these irreps into Young-Tableaux. We’re con-
sidering SU(2), so, as we described in Section 3.6.1, we can categorise any Young-Tableaux
by its dimension. An irrep with dimension n has (n − 1) boxes. So, from the fact that the
dimension of our irreps are (j + 1), our Young-Tableaux are just j horizontal boxes.

Example 5.1.3 . Let’s consider the example of j = 1, then we have

d(H) =

(
1 0
0 −1

)
, d(E−) =

(
0 0
1 0

)
, d(E+) =

(
0 1
0 0

)
,

which are exactly Equation (5.3), so this is the fundamental representation. This agrees with
the remark above as we expect the Young-Tableaux to just be a single box, which is the
fundamental representation. Our states are |±1〉.

Example 5.1.4 . Now let’s consider j = 2. Here we have

d(H) =

2 0 0
0 0 0
0 0 −2

 , d(E−) =

0 0 0
1 0 0
0 1 0

 , d(E+) =

0 2 0
0 0 2
0 0 0

 .

We have three states |±2〉 and |0〉. Our Young-Tableaux here is simply

.

Exercise

Check that the Casimir Equation (4.5) is indeed a multiple of the identity for the irreps
of j = 1, 2. Hints: 1) We have already found the Killing form in Example 4.4.2. 2) Be
careful: the Equation (4.5) is expressed in terms of d(τ)s, you need to convert this into
d(H)/d(E±) first.

The generalisation of the above exercise for general j is

C =
j

2

(
j

2
+ 1

)
1
2
.

To a quantum physicist this whole lecture will have looked very familiar, and this last result
in particular; recall that the spin operator acts as

S2 = s(s+ 1)
1
2
,

so we see that j is twice the spin. Equally d(H) is playing the role of 2Sz.

Remark 5.1.5 . Of course we could have divided j by two everywhere and obtained exactly
the spin, however we have been using a mathematician’s convention and they prefer to carry
2s around then 1/2s.

As a final comment before moving on to SU(3), let’s just make a comment on how you
relate the index notation φ(ij...) to kets. We do it for j = 1 and set j = 2 as an exercise.6

6Again this is because it’s set as an exercise on the course and I don’t want to put the answers on here. If
you don’t understand what I did below please feel free to email me for clarity.
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Example 5.1.6 . For j = 1 we have a single index, which transforms as

d(X) : φi 7→ Xi
jφ
j .

Now consider the action of d(H): we have H = diag(1,−1), so we get

d(H) : φ1 7→ H1
jφ
j = φ1

d(H) : φ2 7→ H2
jφ
j = −φ2,

so we relate
φ1 ∼ |1〉 , and φ2 ∼ |−1〉 ,

and obtain
d(H) = diag(1,−1),

which is just the fundamental representation, in agreement with the previous comments.

Exercise

Repeat the calculation above but now for j = 2 to obtain

φ11 ∼ |2〉 , φ(12) ∼ |0〉 , and φ22 ∼ |−2〉 .

This tells us that
d(H) = diag(2, 0,−2),

which we agrees with what we wrote before.

5.2 su(3)

Let’s now consider the Lie algebra of SU(3). We have seen that this is the set of 3 × 3,
traceless, hermitian matrices. The commonly used basis for this space are the so-called Gell-
Mann matrices:

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 and λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

(5.10)

An observant person might realise that these matrices have the Pauli matrices (i.e. the
basis elements of su(2)) embedded in them. For example λ1, λ2 and λ3 contain exactly the
Pauli matrices in the top left corner.
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Claim 5.2.1 . We can group the Gell-Mann matrices into three groups, each of which obeys
an su(2) algebra (i.e. the structure constants is the Levi-Civita tensor). The groups are

(i) λ1, λ2 and λ3,

(ii) λ4, λ5 and 1
2(
√

3λ8 + λ3), and

(iii) λ6, λ7 and 1
2(
√

3λ8 − λ3).

Proof. This can easily be checked just by calculating all the commutation relations, but we
gain little insight by doing this, so just state its true here.7

We now want to do a similar thing to the su(2) case and use a smart basis that corresponds
to raising and lowering operators. We have a bit more of a challenge here though, as we have
3 su(2)s to consider. Luckily the result is known so, as if by magic, we just state it. We label
each su(2) by α, β and (α+ β) with

Hα+β = Hα +Hβ, and E±(α+β) = [E±α, E±β].

Explicitly we get

Hα =

1 0 0
0 −1 0
0 0 0

 Eα =

0 1 0
0 0 0
0 0 0

 E−α =

0 0 0
1 0 0
0 0 0



Hβ =

0 0 0
0 1 0
0 0 −1

 Eβ =

0 0 0
0 0 1
0 0 0

 E−β =

0 0 0
0 0 0
0 1 0


Hα+β =

1 0 0
0 0 0
0 0 −1

 Eα+β =

0 0 1
0 0 0
0 0 0

 E−α−β =

0 0 0
0 0 0
1 0 0

 .

As the notation suggests, the idea is that each label forms one su(2) group, and the E±s are
the raising and lowering operators within each group. We call α and β simple roots, whereas
(α+ β) is a non-simple root.

We can just focus on the simple roots (as the non-simple ones are obtainable from simple
ones). First note that

[Hα, Hβ] = 0,

and so, from the definition of a representation of a Lie algebra,

[d(Hα), d(Hβ)] = 0.

This tells us that we can simultaneously diagonalise both d(Hα) and d(Hβ), as they are both
unitary. We then proceed as before to label the states of the representation space, but now
we have two weights (i.e. eigenvalues) to keep track of. We define the states by

d(Hα) |m,n〉 = m |m,n〉 , and d(Hβ) |m,n〉 = n |m,n〉 . (5.11)
7By all means feel free to check yourself.
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Now we want to define the action of the lowering operators, d(E−α) and d(E−β), on these
states as before. First consider d(E−α): we know

[d(Hα), d(E−α)] = −2d(E−α),

which, following the calculation from the previous section, tells us that d(E−α) lowers the
value of m by 2. The question is "does it effect n?"

Exercise

Verify that
[d(Hβ), d(E−α)] = d(E−α).

Use this to show that d(E−α) increases the value of n by 1. Hint: You can just find the
commutator of Hβ and E−α and then use the definition of d to obtain the above result.

Putting the result of the above exercise together with the comment just before it, and
making a similar argument for d(E−β), we rescale our states so that they satisfy

d(E−α) |m,n〉 = |m− 2, n+ 1〉 , and d(E−β) |m,n〉 = |m+ 1, n− 2〉 . (5.12)

We define our highest weight state by the condition

d(Eα) |m,n〉 = 0 = d(Eβ) |m,n〉 .

From this condition and Equation (5.12), we can again produce the whole weight lattice with
lowest weight state

d(E−α) |m̃, ñ〉 = 0 = d(E−β) |m̃, ñ〉 .

Definition. [Root Lattice] We define the root lattice to the be the lattice of all the states
of simple roots.

Example 5.2.2 . Consider the fundamental representation. We can find the states by consid-
ering the index expressions. We have

d(Hα) : φi 7→ (Hα)ijφ
j ,

and similarly for d(Hβ). Therefore, using the matrix expressions above, we get

d(Hα) : φ1 7→ φ1

d(Hα) : φ2 7→ −φ2

d(Hα) : φ3 7→ 0.

Doing the same thing for d(Hβ) gives the states

|1, 0〉 , |−1, 1〉 , and |0,−1〉 . (5.13)

The first/last is the highest/lowest weight state, respectively. The root lattice is depicted
below.



LECTURE 5. SYSTEMATIC APPROACH TO FINITE DIMENSIONAL IRREPS 53

m

n

|1, 0〉

|−1, 1〉

|0,−1〉
α+ β

β

α

We have indicated the states on the diagram. The raising/lowering operators move you from
point to point on the root lattice, going with/against the vectors

α =

(
2
−1

)
, and β =

(
−1
2

)
. (5.14)

That is, for example,

d(Eα) : |−1, 1〉 7→ |1, 0〉 , and d(E−β) : |−1, 1〉 7→ |0,−1〉 .

Exercise

Finish obtaining Equation (5.13), i.e. do the d(Hβ) part.

Example 5.2.3 . Now let’s consider the representation which has the highest/lowest weight
states |1, 1〉 / |−1,−1〉, respectively. We don’t know the expressions for d(Hα/β) here,8 but we
can obtain the root lattice by plotting these two states and applying the raising and lowering
operators, i.e. use Equation (5.14). We get the following diagram.

m

n

|1, 1〉

|−1, 2〉

|2,−1〉
|−1,−1〉

|1,−2〉

|−2, 1〉

|0, 0〉

8Note we could obtain them using the index aproach, but I think you’d agree the method used here is a
lot faster.
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I have tried to make it clear how you obtain the points: the red points/arrows are the highest
weight state and the lowering operators acting on it; the blue points/arrows are the lowest
weight state and the raising operators acting on it. The black arrows are included to show
you can ‘close’ the diagram using d(E±(α+β)).

Note that we can get to the origin in two different ways. We count these as two separate
states, so in total we have 8 states. This tells us the the dimension of the representation space
is 8, which we can use to obtain the Young-Tableaux:

which for SU(3) does indeed have dimension 8. We can do a similar thing for the previous
example (with dimension 3) to get the single box Young-Tableaux, which is the fundamental
representation, as required.

Remark 5.2.4 . Note that in the root lattice diagrams we can identify the highest/lowest weight
states by looking where the arrows point to/away from. This is because the arrows repre-
senting raising, so they all point towards the highest weight state and away from the lowest
weight state. Combining this with the Young-Tableaux argument given at the end of the last
example, we see how much information is really packed into these diagrams!

5.2.1 The Eightfold Way

The above remark just made a point about how much information is contained in these
diagrams, however it seems a shame that they’re not very nice shapes. By which I mean,
both of them are squashed versions of nice shapes (i.e. an equilateral triangle and a hexagon).
The question is: "can we make them look nicer?" The answer is yes, and we will do this next
lecture, but here’s the basic idea. There root space comes with a metric, and as we’ve drawn
them the metric is not in some nice form. We make the diagrams look nicer by considering a
change of basis, making the metric into the Euclidean metric. This will make the above two
diagrams look like the following. In both diagrams, Λ labels the highest weight state and −Λ
the lowest weight state. The dashed line is explained in a minute.

α

β

Λ

−Λ

Λ

−Λ

The hexagon diagram has direct relation to particle physics. The story goes (roughly) as
follows: in the 1950s particle physicists were trying to work out the symmetries of the strong
force. After a lot of work they realised that the combination of isospin and strangeness were
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(almost) conserved by the strong interactions. They also found that certain hadrons with
the same spin had (almost) degenerate masses, which suggested a symmetry. If you plot the
third component of isospin, T3, against the so-called hyper charge,9 Y , you got the following
diagram:

T3

√
3
2 Y

K+K0

π+π0ηπ−

K− K
0

Hmm... this looks awful familiar. This lead them to the idea that the fundamental objects
are quarks/antiquarks, which transform in the fundamental/antifundamental representations
of SU(3), i.e.

and =

are the quark and antiquark respectively. Mesons (a quark-antiquark pair) are therefore given
by

⊗ = ⊕ 1,

or
3⊗ 3̄ = 8⊕ 1.

This gives us exactly the hexagon diagram above. This result is often referred to as the
eightfold way. As the diagram corresponds to an irrep, by the argument made at the end of
lecture 2, we see that these things have the same mass!10 So these root diagrams have very
physical importance for us.

Remark 5.2.5 . The dashed line on the hexagon diagram represents a physical symmetry
known as Weyl symmetry.

Similarly for baryons (which are 3 quarks) we get the decomposition

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 8⊕ 1.

9Baryon number + strangeness.
10It turns out these things do actually have different mass. This comes from the fact that the different

generations of quarks form separate invariant subspaces of the SU(2)L part of the standard model. Therefore
the different generations of quarks have different masses which ruins the result here.



LECTURE 5. SYSTEMATIC APPROACH TO FINITE DIMENSIONAL IRREPS 56

The two 8s correspond to hexagons as above, while the 10 corresponds to the following big
triangle, known as the baryon decuplet.

∆− ∆0 ∆+ ∆++

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗+

Ω−



6 | Lorentz Group & Cartan Classifi-
cation

Remark 6.0.1 . Unfortunately this lecture is the one that is must heavily bashed by the lack
of time on the course, so a lot of the material is sort of brushed over or set as exercises. I shall
try and flush out this lecture with additional information to help clarify things, however as
with previous exercises, I won’t type the answers to any of the exercises set in Dr. Dorigoni’s
notes/problem sheets.

We saw last lecture that su(2) appeared to be some kind of ‘building block’ for other Lie
algebras. In this lecture we are going to show that this is actually more powerful than just
the case of su(3) discussed in the previous lecture, by first considering the Lorentz group and
then touching on Cartan’s classification.

6.1 Lorentz Group

The Lorentz group, denoted SO(3, 1),1 is the group whose elements are 4 × 4, invertible
matrices which we denote by Λ. We write their action on elements in R4 as

X
′µ = ΛµνX

ν .

They preserve the pseudo-inner product on R4, i.e.

X
′µηµνX

′ν = XµηµνX
ν , (6.1)

where we use signature
ηµν = diag(1,−1,−1,−1).

Physically the Lorentz group corresponds to spatial rotations and Lorentz boosts.

Remark 6.1.1 . The Lorentz group is an example of what are known as non-compact groups.
We will not discuss technically what this means here but simply say that it corresponds to the
range of the parameters being open intervals.2 This is the case for the Lorentz group because
we can only boost asymptotically to the speed of light. That is the parameter β := v/c has
range β ∈ (−1, 1), which is open. We will return to this fact shortly.

1Some people write SO(1, 3), it doesn’t matter, the numbers just indicate the number of +s and −s in the
metric.

2See a book on topology for more details on compact spaces.

57
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Exercise

Use Equation (6.1) to show that

ΛρµηρτΛτ ν = ηµν .

This is often given as a defining property of the Lorentz group. Use this result to show
that

Λµν = δµν + εωµν

is the infinitesimal deviation from the identity element in SO(3, 1), provided ωµν =
−ωνµ.

The previous result tells us about the Lie algebra. The generators are the ωµνs, and the
antisymmetry condition tells us that the dimension is d = 4(4−1)

2 = 6. These are the three
spatial rotations and the three boosts, and you can show they obey the commutation relations

[Ji, Jj ] = εijkJk

[Ji,Kj ] = εijkKk

[Ki,Kj ] = −εijkJk,
(6.2)

where the Js are the generators of spatial rotations and the Ks are generators of boosts.

6.1.1 Smart Basis

The first relation in Equation (6.2) looks just like a su(2), but the second two mess it all up.
The question is "can we change coordinates in such a way as to produce two3 sets of su(2)?"
The answer is yes, and is accomplished by defining

Ni :=
1

2

(
Ji − iKi) and N i :=

1

2

(
Ji + iKi) (6.3)

Claim 6.1.2 . The expressions Equation (6.3) form a basis for so(3, 1) and obey the commu-
tation relations

[Ni, Nj ] = εijkNk

[N i, N j ] = εijkNk

[Ni, N j ] = 0.

(6.4)

Exercise

Prove the above claim.

The above claim gives us exactly what we wanted, two separate copies of su(2) embedded
in so(3, 1). We write this as

so(3, 1) = su(2)L︸ ︷︷ ︸
N

× su(2)R︸ ︷︷ ︸
N

,

3Note we know it’s two because the dimension is 6 and each su(2) has dimension 3.
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where the L/R stand for left/right, respectively. The reason for this will become clear in
just a moment. Therefore the irreps of the Lorentz algebra are completely specified once we
specify the irreps of the two su(2)s. This is brilliant because in lecture 3 we classified all
the representations of SU(2) (which we can convert into representations of the Lie algebra).
They were specified by a single integer, j, related to the dimension d = j + 1. So we can
categorise all of the representations of SO(3, 1) using two integers, (j1, j2), with dimension
d = (j1 + 1)(j2 + 1). We give some examples below.4

(j1, j2) Name Symbol Dimension Young-Tableaux

(0, 0) Scalar φ 1 1L × 1R

(1, 0) Left-handed Weyl Spinor ψα 2
L
× 1

(0, 1) Right-handed Weyl Spinor ψα̇ 2 1L ×
R

(1, 1) Vector Aαα̇ 4
L
×

R

(2, 0) Self-dual 2-form Fαβ 3
L
× 1R

(0, 2) Antiself-dual 2-form Bα̇β̇ 3 1L ×
R

Remark 6.1.3 . Now things are a little subtle because we’re treading the line between mixing
the Lie group, which have the matrices Λµν , and the Lie algebra, which have the basis elements
{Ni, N i}. The objects in the table above are in the representation space of the Lie group
(that’s why we can draw Young-Tableaux), but we want to use the nice properties of the Lie
algebra to study things. What we have to remember is that the two structures are related
by the exponential map, and we can relate their representations this way. I shall try to be as
explicit as possible in the following but it’s likely I’ll make a couple errors.

Notation. As we have done in the table above, we will denote elements of SU(2)L with α, β
etc., and we will denote elements of SU(2)R with α̇, β̇ etc. The reason is that this is the usual
notation used in places like supersymmetry. Note that both indices take values in {1, 2}.

We should stop a second a make a few comments on the table above. The first three
entries are fine, but we call the (1, 1) entry a vector. As is required, it has an α and a α̇ index,
but we’re used to writing vectors with a single spacetime index, µ. So what’s going on? Well,
as we will see shortly, it turns out that something of the form Aαα̇ does indeed transform as
a vector in SO(3, 1), i.e. we can ‘repackage’ the information such that

Aµ 7→ ΛµνA
ν .

A similar thing holds for the (2, 0) and (0, 2) entries, but we won’t discuss that here.
4The Young-Tableaux here might look a little strange. The important thing to note is the we are not taking

the tensor product of two Young-Tableaux, but the Cartesian product. This just corresponds to categorising
the representations by the double (j1, j2), see a linear algebra book if this doesn’t make sense.
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Remark 6.1.4 . As we just said, the last two are not going to be important to us here but for
completeness, basically they obey

F = ?F, and B = − ? B,

where ? is the Hodge dual.5 In spacetime components this can be written

Fµν =
1

2
εµνρσFρσ, and Bµν = −1

2
εµνρσBρσ.

These structures play crucial roles in the study of so-called Yang-Mills instantons.

There is another important representation to consider, but this one is reducible. It is
known as a Dirac spinor and is given by (1, 0)⊕ (0, 1), which we write in matrix form as6

ψD =

(
ψα
ψα̇

)
.

It has dimension dim(1, 0) + dim(0, 1) = 2 + 2 = 4, however it is not a vector as

(1, 0)⊕ (0, 1) 6= (1, 1).

Remark 6.1.5 . As was the case with the js in the previous lecture, we are using the mathe-
matician’s notation with integers not half integers. A physicist would write the Dirac spinor
as (12 , 0)⊕ (0, 12). Same for the other terms in the table above.

6.1.2 Left-Handed vs Right-Handed Spinors

Let’s consider the left-handed Weyl spinors first. As per the table above, they transform
like the fundamental representation in SU(2)L and via the trivial representation in SU(2)R.
Keeping Remark 6.1.3 in mind, we can convert this into a statement about the representations
of the Lie algebras su(2)L/R. In terms of our basis {Ni, N i}i∈{1,2,3}, we have7

d(Ni) = τi = − i
2
σi, and d(N i) = 0, (6.5)

where we have used the basis Equation (5.1) (so the commutators work nicely). So what does
this representation look like in terms of the Lie group? That is we want to find an expression
for

D(Λ) : ψα 7→ Λβαψβ

in terms of the representation of the Lie algebra. How do we do this? Well we use the
exponential map to obtain

Λµν = exp
(
ωµν

)
.

Note this is a finite transformation as we don’t have the small parameter ε, as we did in the
exercise above. As we said after this exercise, ωµν has 6 free parameters, 3 of which are the

5See a book on differential geometry.
6It is also often written with ψL and ψR as entries.
7Note the representation d(X) = 0 in the Lie algebra corresponds to D(e0) = 1 in the Lie group, which is

exactly the trivial representation.
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rotations and the other 3 the boosts. We shall denote these by ri and bi with i ∈ {1, 2, 3}.
Now the d(Ni)/d(N i) span the representation, and so we obtain

D(Λ) : ψα 7→ exp
[
nid(Ni)

]β
α
ψβ,

with ni ∈ C and where we don’t get any d(N i) terms by Equation (6.5).
The question is "what are the nis?" Well they are linear combinations of the ri and bi

mentioned above, and we can decide how by using our required interpretation. We want the
ris to be the rotations, and we have seen previously that the rotations are given by exp(aiAi)
where ai are the rotation angles and Ai are the rotation matrices in the Lie algebra. We
therefore want the ri term to come in the form

exp(riτi) = exp

(
− i

2
riσi

)
.

Similarly we want the boost parts not to look like a rotation, and so we don’t want the i
factor, i.e. we want something of the form

exp(−ibiτi) = exp

(
− bi

2
σi

)
.

Using Equation (6.5), we therefore take

ni = ri − ibi. (6.6)

Note these two sign conventions have been chosen so that they line up with Equation (6.3).
Putting this together we get

D(Λ) : ψα 7→Mβ
αψβ, with Mβ

α := exp

(
− iri

2
σi −

bi
2
σi

)β
α

. (6.7)

Remark 6.1.6 . Note that Mβ
α ∈ SL(2,C) and not SU(2). That is it is not unitary. This is a

result of a theorem which says that non-compact groups cannot have unitary representations,
and in Remark 6.1.1 we said that the Lorentz group is non-compact. Note that this result
stems from the fact that we have complexified the nis. If we had not (e.g. if we’d set
ni = ri + bi) then we could have got two types of rotation in Equation (6.7), and we would
have been studying SO(4), which is compact.

We can now redo the whole game for the right-handed spinors. In this case we have the
representation opposite to Equation (6.5), namely

d̃(Ni) = 0, and d̃(N i) = τi = − i
2
σi.

If we consider the same Lorentz transformation as above, everything follows through the same,
apart from now we use

ni = ri + ibi,

and obtain

D̃(Λ) : ψα̇ 7→ (M∗)β̇ α̇ψβ̇, with (M∗)β̇ α̇ := exp

(
− iri

2
σi +

bi
2
σi

)β̇
α̇

. (6.8)
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Note that basically the only difference between the representations on left-handed and
right-handed Weyl spinors is the sign before the boost part. This corresponds physically
to a property known as helicity. Helicity basically tells you the projection of the spin of a
massless particle (which Weyl spinors are) onto its momentum, we call the two options left-
and right-handed (hence the names we’ve been using). These names come from our hands:
make a thumbs up but don’t curl your fingers all the way in, now imagine your thumb points
in the direction of momentum, then your fingers tell you about the spin direction. A right-
handed spinor has spin-momentum projection like your right hand looks, and similarly for a
left-handed spinor.

Left-Handed Right-Handed

6.1.3 Vectors

We can now return to the comment we made about about the fact that Aαα̇ is a vector. Let’s
looks how it transforms:

D(Λ)× D̃(Λ) : Aαα̇ 7→Mβ
α(M∗)β̇ α̇Aββ̇ = (MAM †)αα̇.

This still doesn’t look anything like the transformation of a vector. We recover our usual
vector type transformation by introducing the following vector of matrices

σµ := (12×2,−σ1,−σ2,−σ3).

We can use this to repackage the information of a vector Xµ as a 2× 2 matrix. We define

Xαα̇ := Xµηµνσ
ν =

(
X0 +X3 X1 − iX2

X1 + iX2 X0 −X3

)
.

Now we have just chosen to label the entries of this 2 × 2 matrix with an αα̇, but haven’t
shown it actually relates to the αα̇ notation of left-handed/right-handed representations. Well
it turns out that if you consider the Lorentz transformation

X
′µ = ΛµνX

ν ,

where this Λ is the same as the one in Equations (6.7) and (6.8), it translates to

X
′
αα̇ = (MXM †)αα̇. (6.9)

The proof of this is the content of the next exercise.8

8This is something that was set as a problem sheet question on the course, so I don’t want to type the
answer. If the question is unclear at all, please feel free to email me for further clarity.
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Exercise

Given the matrices

J1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , J2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , J3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,

K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , K3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


show that the vector representation of SO(3, 1) corresponds to the (1, 1) representation
of SU(2)L × SU(2)R. That is prove that Equation (6.9) holds. Hint: Construct the
explicit representation of the generators Ni/N i of SU(2)L × SU(2)R starting from the
Ji/Ki matrices given above.

6.2 Cartan Classification

So we have done a lot of work regarding representations of groups, the final question we want
to ask is "can we classify all Lie algebras and their representations?" The answer is yes and
no. The no part just means that their are too many Lie algebras, and so we need to restrict
ourselves to a smaller set. The yes will take some time to get to. First we need to introduce
some definitions.9

6.2.1 Some More Definitions/Theorems

Definition. [Abelian Lie Algebra] A Lie algebra (g, [, ]) is said to be Abelian if the Lie
bracket of any two elements vanishes. That is, for all g1, g2 ∈ g

[g1, g2] = 0.

Definition. [Lie Subalgebra] Let (g, [, ]) be a Lie algebra. Then then we call h ⊂ g a Lie
subalgebra if it is a subspace and it is closed under the Lie bracket, i.e.

[h1, h2] ∈ h, ∀h1, h2 ∈ h.

9Some of these may have appeared above. I have decided to present them here again anyways just so this
section is easier to read.
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Definition. [Invariant Lie Subalgebra/Ideals] An invariant Lie subalgebra is a Lie subal-
gebra that goes into itself under commutation with any element of the full Lie algebra.
That is, for all g ∈ g and h ∈ h

[h, g] ∈ h.

We also refer to these as ideals.

Corollary 6.2.1. Every Lie algebra possesses two ideals, namely h = {0} and h = g. We
refer to these as trivial ideals.

Exercise

Verify the above Corollary. Hint: This is not a trick question, it is very straight forward.

Definition. [Simple Lie Algebra] A Lie algebra is called simple if it has dim g > 110 and
it has no non-trivial ideals.

Remark 6.2.2 . Ideals is a similar concept to an invariant subspace of a representation. Simi-
larly, simple Lie algebras are akin to irreps.

It is the Abelian ideals that mess up our classification process. This is just because once you
hit one element of an Abelian ideal, everything commutes and so you loose all the information
(i.e. the structure constants are all vanishing). This motives the next definition.

Definition. [Semisimple Lie Algebras] A Lie algebra is said to be semisimple if it has no
Abelian ideals.

Theorem 6.2.3. A semisimple Lie algebra can be written as a direct sum of simple Lie
algebras.

Theorem 6.2.4 (Cartan). A Lie algebra is semisimple if, and only if, its Killing form is
non-degenerate. That is gab is well defined.

Proof. See page 41 of Dexter Chua’s notes for part of the proof.

Definition. [Ad-Diagonalisable] Let (g, [, ]) be a Lie algebra. We say an element X ∈ g is
ad-diagonalisable if the adjoint representation ad(X) is diagonalisable.

6.2.2 Standard Form Of Semisimple Lie Algebras

Essentially what we’re going to try and do is use some smart basis such that our Lie algebra
becomes a bunch of su(2)s. This basis is known as the Chevalley basis. We are going to use
our discussion of su(3) from last lecture as a guiding example.
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Step 1

Find a maximal set of independent, commuting, ad-diagonalisable elements, {H1, ...,Hr}.
The value r is known as the rank of the Lie algebra, and the subalgebra

h := spanC{H1, ...,Hr} (6.10)

is known as the Cartan subalgebra, it is not unique. The idea is going to be to simultaneously
diagonalise the (adjoint) representation of all of these, as we did last lecture. This is why we
require {Hi} to be ad-diagonalisable.

Example 6.2.5 . We saw last lecture that for su(2), r = 1 and we can chose H = σ3. We also
saw that r = 2 for su(3) and had H1 ∼ λ3 and H2 ∼ λ8. This result generalised for su(N),
where r = N − 1.

Step 2

Consider the algebra as a representation space on its own, i.e. use the adjoint representation.
From the definition of a representation, and the fact that [Hi, Hj ] = 0, we have

[ad(Hi), ad(Hj)] = 0 ∀i, j ∈ {1, ..., r}.

Proposition 6.2.6. Let h be a rank r Cartan subalgebra of g. Then any X ∈ g that satisfies
[X,Hi] = 0 for all i ∈ {1, ..., r}, then X ∈ h.

This proposition basically tells us that every diagonal element is non-zero in at least one
of the His, as if one wasn’t then the diagonal matrix with only that one entry in it would
commute with all other His. Combining this result with the fact that the matrices of the
adjoint representation are dim g× dim g in size, we get the following important result.

Corollary 6.2.7. The simultaneous eigenvectors11 of the ad(Hi)s form a basis for the whole
Lie algebra g.

We call these simultaneous eigenvectors root vectors and denote them by Eα, where α =
(α1, ..., αr) are the simultaneous eigenvalues.12 We call α the root and it lives in an r-
dimensional vector space, called the root space. The set of all roots is called the root system,
and it corresponds to the spectrum of the Cartan subalgebra.

The eigenvector condition tells us

ad(Hi)Eα := [Hi, Eα] = αiEα, (6.11)

where the middle expression is just the definition of the adjoint representation. Comparing
to the previous lecture, we see that the root vectors are just the generalisation of the step
operators. This is nice, but last lecture the commutators were [H,E±] = ±2E±, we want to
recover this.

11We allow the eigenvalue to be zero here.
12We have actually used the fact that the eigenvectors are non degenerate. That is, each α has a unique

eigenvector Eα
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The Killing form induces a metric on h:

gij = f c
i df

d
j c, with i, j ∈ {1, ..., r} and c, d ∈ {1, ...,dim g}.

By Cartan’s theorem this is invertible, and so we have

gij := (g−1)ij .

We define the inner product as
〈X,Y 〉 := Xkg

ksYs (6.12)

for X,Y ∈ h. Then we define, for every root α,

HαX :=
2gijαiHj

〈α, α〉
, (6.13)

which is just a linear combination of Cartan elements. We also define

αX
i :=

αi
〈α, α〉

, (6.14)

which we call a coroot. This gives us

HαX = 〈αX, H〉 = αX
i g

ijHj ,

which in turn gives us

[HαX , Eα] =
2gijαi
〈α, α〉

[Hj , Eα] =
2gijαi
〈α, α〉

αjEα = 2Eα,

which is what we wanted to obtain.

Remark 6.2.8 . Note we can think of 〈α, α〉 as an inner product on the root space, telling us
the length the root α w.r.t. gij . This is exactly what we were talking about last lecture with
the root diagrams not having nice shapes but being squashed. We can make them nicer by
taking a change of basis such that this metric becomes the Euclidean one.

Exercise

Consider the weight lattice given last lecture for the fundamental represntation of
SU(3), i.e. the squashed triangle with states |1, 0〉 , |−1, 1〉 and |0,−1〉. The Killing
metric on this root space is

gij =

(
2 1
1 2

)
so that the inner product

〈α, β〉 =
(
2 −1

)(2 1
1 2

)(
−1
2

)
= −3.

By considering the inner product of all the weights, convince yourself that geometrically
the weight lattice form the vertices of an equilateral triangle.
Comment: Again this one is taken straight from the problem sheets on the course, but
I’ve included it to illustrate the fact that we can make nice shapes. As always, feel free
to email me if you want further explanation.
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Step 3

The last thing we have to do is find the commutators between the different root vectors, i.e.

[Eα, Eβ] =?

Well recall last lecture we set
Eα+β = [Eα, Eβ].

Exercise

Use Equation (6.11) to show

ad(Hi)
(
[Eα, Eβ]

)
= (αi + βi)[Eα, Eβ],

thereby justifying what we defined last lecture.

This result also explains why last lecture we only needed to consider the simple roots α
and β and not the other root (α+ β). This result generalises to the following definition.

Definition. [Simple Root] A simple root is a positive root α that can not be written as a
sum of two positive roots.

Remark 6.2.9 . We say positive root, because obviously if we have the root α, then −α is also
a root, so we decide to split our root space in two and define simple roots only using the
positive ones. Note we decide which roots are positive, it is not something that is given to us.
In perhaps more technical language, we take an (r − 1)-dimensional hyperplane of our root
space and say "everything above this plane is positive, and everything below it is negative".

Corollary 6.2.10. Our root space has exactly r simple roots.

Proof. This just follows from the fact that our root space is a r-dimensional lattice space, and
so we have r linearly independent roots that we can use to span the space.

This Corollary allows us to categorise all other roots, simply: we call a non-simple root
positive if it can be written as a sum of simple roots with all coefficients being positive.
Likewise we have a negative root. Note that a root is either positive or negative, as it either
lies above the hyperplane or below it.

This basis on the root space induces a nice basis on the Cartan subalgebra given by {HαX
i
}

such that
[HαX

i
, Eαj ] = CijEαj , (6.15)

where Cij is a r × r matrix, known as the Cartan matrix.

Example 6.2.11 . For su(2) the rank is r = 1 and we just have C11 = 2. For su(3) the rank is
r = 2 and we have

Cij =

(
2 −1
−1 2

)
.
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The su(3) example above shows us that although we have a bunch of embedded su(2)s,
they do talk to each other as the off diagonal elements are non-vanishing. However it is a nice
surprise that for a general su(N) the Cartan matrix is the (N − 1) × (N − 1) matrix of the
form

Cij =


2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 ,

with all the missing elements being 0. This tells us that although the embedded su(2)s speak
to each other, they only speak with their ‘neighbours’ and not everyone, i.e. it is only the
just off diagonal elements that are non-zero.

Proposition 6.2.12. All the information about a simple Lie algebra can be extracted from
the Cartan matrix and the simple roots.

The ‘proof’ of this proposition is the following idea: you start with the highest weight
state and use the Cartan metric to work downwards and obtain all other states. For clarity,
the states are given by

d(HαX
i

) |λ1, ..., λr〉 = λi |λ1, ..., λr〉 ,

where d is some representation. The highest weight state is defined via

d(Eα) |Λ1, ...,Λr〉 = 0,

for all simple roots α.
Cartan managed to classify all (not just su(N)) simple Lie algebras by examining the

possible Cartan matrices and possible allowed root lattices. He developed a system to indicate
these pictorially, known as Dynkin diagrams. Dr. Dorigoni did not have time to discuss these
in this course, but details about them can be found in Dexter Chua’s notes or on Dr. Schuller’s
"Lectures on the Geometric Anatomy of Theoretical Physics".

6.3 Lie Groups Relevant In Physics

We end this course with a brief mention of some of the Lie groups relevant in physics.

(i) In the standard model, the gauge group is SU(3)× SU(2)× U(1).

(ii) Grand unified theories, need a group that can contains the standard model group as a
subgroup. Two possibilities are SU(5) and SO(10).

(iii) In superstring theory we have multiple groups, including SO(10)13 and something called
E8 (classified as a Dynkin diagram).

6.4 Dykin Diagrams

To come when I get time to type this up. These were not part of the course, but just something
I think worth including.

13See my notes on Dr. Shiraz Minwalla’s string theory course for why we need SO(10).
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