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1 | Setting Up QED

1.1 The Lagrangian

Quantum electrodynamics (QED) is the quantum field theory (QFT) of the electromagnetic
interactions. As such it is responsible for interactions between electrically charged particles,
more specifically Fermions. These interactions as mediated1 by our good friend the photon.
As such QED is the study of quantising a Lagrangian that marries the Lagrangian of Maxwell
theory,

LMaxwell = −1

4
FµνF

µν , Fµν := ∂µAν − ∂νAµ,

where Aµ is the photon field, with the Dirac Lagrangian (which describes Fermion fields)

LDirac = ψ
(
i/∂ −m

)
ψ, ψ := ψ†γ0, and /∂ := γµ∂µ.

In fact the Maxwell Lagrangian we have written above can be adapted to include an additional
term, giving us

LMaxwell = −1

4
FµνF

µν − LGF ,

where "GF" stands for "gauge fixing". This gauge fixing term can be grouped into two types,
known as axial

LAxial
GF = nµA

µ, with n2 = 1,

and covariant gauges

LCovariant
GF =

1

2ξ
(∂µA

µ)2,

where ξ is a number. It can take three different values and each value corresponds to a
different gauge fixing, they are

ξ =


0 Landau
1 Feynman
∞ Unitary

(1.1)

The most commonly chosen gauge fixing Lagrangian is the covariant Feynman gauge.

Remark 1.1.1 . The Feynman gauge actually allows us to make a nice observation. Recall that
in electromagnetism the Coulomb gauge condition ∇· ~A = 0 results in the equations of motion

∂2 ~A = 0.

1This is just the technical term for "the thing that causes two charged particles to talk to each other".

1



CHAPTER 1. SETTING UP QED 2

This is not a Lorentz invariant expression, as we have fixed the value of A0. However in the
Feynman gauge the equations of motion that arise from our Lagrangian are

∂µF
µν + ∂ν(∂µA

µ) = ∂2Aν = 0, (1.2)

which is a Lorentz quantity (we have a proper Lorentz index ν here). The claim is that we
can reach a similar conclusion even if we let ξ take different values, and this gives us insight
to why we call these gauges the covariant gauges.

Exercise

Calculate the equations of motion for the Maxwell Lagrangian in the Feynman gauge
and prove Equation (1.2) holds.
Hint: Integrate the LGF term before finding the equations of motion.

We can combine all these Lagrangians together to obtain the QED Lagrangian

LQED = −1

4
FµνF

µν + ψ
(
i /D −m

)
ψ − LGF , /D := /∂ + ieQ /A. (1.3)

We see that this expression contains a term

−eQψ /Aψ

this is our interaction term and it corresponds a vertex with two Fermions and one photon
(see the Feynman rules below). e = ±1 here tells us the sign of the charge relative to the
electron, and Q tells us the magnitude of the charge. For example, the electron has e = +1
and Q = 1, while the up quark e = −1 and Q = 2/3.

1.2 Recap On Cross Sections

Recall that fundamentally what we want to calculate is the probability for a given process to
occur. This is given by what we call a cross section, and the procedure for obtaining a cross
section is as follows:

(i) Use the Lagrangian (and Dyson’s formula + Wick’s theorem) to obtain the Feynman
rules for your theory,

(ii) Draw all the Feynman diagrams (up to the perturbation order you care about),

(iii) Calculate the matrix elements from each of these diagrams and combine them to find
the total amplitude for the process,

(iv) Use the general formula

dσ =
1

flux
|Mif |2(2π)4δ(4)(pf − pi)

n∏
f=1

d3~p

(2π)32Ef
,

where the bit from (2π)4 on wards it the Lorentz invariant phase space measure (LIPS)
and where n is the number of particles in the final state, to obtain the differential cross
section.
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There are two particular interactions that are of high interest to us: 2 → n scatterings and
1→ n decays. These have differential cross sections given by

dσ2→n =
1

4
√

(p1 · p2)2 −m2
1m

2
2

dLIPS
〈
|Mfi|2

〉
where 1 and 2 index the initial state particles, and

dσ1→n = dΓ =
1

2m
dLIPS

〈
|Mfi|2

〉
where m is the mass of the initial state particle, respectively. Note we have introduced an
averaging notation 〈...〉 which stands for "average over initial state spins/polarisations and
sum over final state spins/polarisations".

For the even more special cases of when we have two final massive state particles with
momenta p3 and p4, we get the expressions

dσ =
1

2s
(2π)4δ(4)(p3 + p4 − p1 − p2)

d3~p3

(2π)3

d3~p4

(2π)3

〈
|M12→34|2

〉
(1.4)

where s = (2ECM )2, with ECM being the centre of mass energy,2 and

dΓ =
1

2m
(2π)4δ(4)(p3 + p4 − p)

d3~p3

(2π)3

d3~p4

(2π)3

〈
|Mm→34|2

〉
.

1.3 QED Feynman Rules

Ok so, as per the list of steps above, if we are going to calculate any cross sections at all, we
need to be able to draw the Feynman diagrams, and in order to do this we need the Feynman
rules. We list these in the table below, but first let’s get some index conventions out the way
(and one remark):

• Dirac indices will be labelled by Greek letters from the start of the alphabet, e.g. α, β
etc.

• Lorentz indices will be labelled by Greek letters from the middle of the alphabet, e.g.
µ, ν.

• We will use Greek letters such as λ and κ for polarisations.

• We will use Latin letters such as s and r to label spins.

Remark 1.3.1 . The polarisation and spin of a particle is only meaningful when it is on-shell,
that is when p2 = m2 is satisfied. As we have seen in previous courses, internal propagator
lines need not be on shell and so it is not meaningful to give them a polarisation and/or spin
index. As such it is only the external (i.e. ingoing and outgoing) particles that get these
indices.

2It gets the name s from the fact that the s-channel diagram has this energy flowing into the vertex.
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Type Diagram Maths Expression

Incoming Fermion
~p

α, s
uα(p, s)

Incoming Antifermion
~p

α, s
vα(p, s)

Incoming Photon
~p

µ
εµ(p, λ)

Outgoing Fermion
~p

α, s
uα(p, s)

Outgoing Antifermion
~p

α, s
vα(p, s)

Outgoing Photon
~p

µ
ε∗µ(p, λ)

Fermion Propagator
~q

β α
i(/q +m)αβ

q2 −m2 + iε

Antifermion Propagator
~q

β α
i(−/q +m)αβ

q2 −m2 + iε

Photon Propagator
~q

µ ν
−i
(
ηµν − (ξ − 1) q

µqν

q2

)
q2 + iε

Vertex

α

β

µ −ieQγµβα



CHAPTER 1. SETTING UP QED 5

Before finishing to explain what we do with these diagrams/rules to obtain the full math-
ematical expression, let’s make a few comments:

• The incoming photon symbol is just a ε while the outgoing one comes with a star, ε∗.

• The bars for Fermions and Antifermions are flipped, that is incoming Antifermions have
the bar, v, while outgoing Fermions have the bar u. As the bar contains a Hermitian
conjugate (which itself contains a transpose) the barred objects are row matrices. Pair-
ing this with the fact that the matrix element is meant to just be a number, it follows
that we need to always put these furthest to the left in our expressions.3 In terms of
using the diagrams to reproduce the mathematical expression, this condition translates
into us reading backwards along the Fermion flow, as indicated in this diagram:

~p1

α, s
~pn

β, r

Read This Way

= uβ(r, ~pn)...uα(s, ~p1)

~p1

α, s
~pn

β, r

Read This Way

= vα(s, ~p1)...vβ(r, ~pn)

• Be careful about the ordering of the Dirac indices for propagators, you switch the order
from diagram to maths expression. That is you take the index at the end of the Fermion
flow and put it first on the γ, as can be seen in the table above.

• Be careful about the sign of the momentum for an Antifermion propagator, it comes
with a minus sign. We can remember this easily as "take the momentum that lines up
with the Fermion flow on propagators". So for Fermions we get a plus sign, but for
Antifermions we get a minus sign.

• If we use the Feynman gauge the second (ugly looking)4 term in the numerator vanishes.
This is one reason why the Feynman gauge is commonly used.

• On the vertex we can only have two Fermions of the same type, by which we mean we
cannot have an electron and a muon meeting at a vertex.

Remark 1.3.2 . A quick remark too... In this course we will take time to flow horizontally in
Feynman diagrams. So our initial states are on the left and final states are to the right.

Ok so that’s our comments out the way. How do we use these diagrams to obtain the
matrix elements iM? Well we follow the procedure listed now:

3If this isn’t clear, consider the matrix multiplications and you’ll see if you order them with the barred at
the right and unbarred at the left, your result won’t work out properly.

4In my opinion anyway...



CHAPTER 1. SETTING UP QED 6

(i) Draw all topologically different5 diagrams.

(a) Do not draw vacuum bubbles, which are basically things that have no external lines.
For example

is not good because of the external loop.

(b) We only draw connected diagrams6 For example

is not valid.

(c) Only draw the diagrams up to the perturbation theory order you want to consider.
The order is given by the number of vertices, so if you wanted to consider up to
order third order, you would draw all the diagrams with 1, 2 or 3 vertices.

(ii) Assign momentum to external legs.

(iii) Assign momentum to internal legs, imposing local momentum conservation at each
vertex. For example

p1 p2

p1 − p2

(iv) Integrate over all undetermined internal momenta, i.e. include a factor of∫
d4qi

(2π)4

for all undetermined qi.

(a) For tree level diagrams there will be no undetermined momenta, so this rule can
be forgotten about.

(b) For diagrams with n internal loops we will have n undetermined momenta, so we
will need n integrals.

(v) Include numerical factors:

(a) −1 for every closed Fermion loop.
5For those interested, I think the notion of "different" here is homotopy. This could be wrong, so if you

think otherwise please feel free to email me.
6Note in the IFT course we referred to these as fully connected. We mean that you can get from any line

to any other line within the diagram.
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(b) Relative factor of −1 for diagrams differing only by the exchange of two final state
Fermions.

(c) Divide by symmetry factor (only for loops).

Remark 1.3.3 . To be technically correct, the condition (i)(c) is not totally true, by which
we mean that it’s not always the case that the number of vertices give you the order in
perturbation theory. The reason for this is that sometimes you can get vertex factors that go
with, for example, the square root of the coupling. Things like this happen when you consider
theories that undergo some form of spontaneous symmetry breaking, which is discussed in
much more detail in the SM course. In these notes we will never encounter a term like this
and so we can take this rule of "number of vertices = perturbation order" rule to be valid.

Remark 1.3.4 . The conditions in (v) might seem mysterious. Condition (b) is explained in
some detail in section 12.2.4 of my IFT notes in terms of Wick contractions, and explained
later in these notes more diagrammatically. Condition (c) should be believable given the
discussions of symmetry factors in IFT. Condition (a), however, is a more subtle beast and is
hard to prove from a canonical view point. You can either take this result to just be true or
you can look up a derivation of it from the path integral language. We do this derivation in
the QFT II course.7

7In case anyone does check my notes on QFT II for this derivation, I haven’t got round to typing that up
yet as it was part of the unlectured material. I will type it up eventually though and delete this footnote.



2 | Tree Level QED

Tree level diagrams are those that don’t contain any loops. In other words, they are diagrams
in which condition (iv) from last lecture is redundant as there is no undetermined momenta.
It is clear, then, that these theories are probably the simplest to study and so form a brilliant
starting point. Here we are going to consider a bunch of them to get ourselves comfortable
with the steps/calculations in order to tackle the harder problems later.

2.1 e−µ− Scattering

The first process we want to consider is the scattering process between an electron, e−, and
a muon, µ−. Pictorially, what we’re doing is considering the diagram

iM

e−e−

µ−µ−

and asking the question "What is iM at tree level?" Let’s just do this to first non-trivial
order.1 It is reasonably easy to convince yourself that there are no diagrams at first order (i.e.
only one vertex) and so the first non-trivial diagram we get is at second order. Now what
kinds of things can we have? Well as we mentioned in the last bullet point in the last section,
we cannot have a muon and an electron meeting at a vertex, that is we cannot connect our
initial state particles with something like

e−

µ−

γ

1By non-trivial order we mean some interaction is actually taking place. So we exclude the case when the
e− just flies along independently of the µ− flying along. We have actually taken care of this by stating that
we only consider connected diagrams in our Feynman rules, rule (i)(b).

8



CHAPTER 2. TREE LEVEL QED 9

and similarly we cannot connect the final state particles at a vertex. Finally we can also not
connect an initial state electron with a final state muon (and same thing reversed), i.e. we
cannot draw

e−

µ−

γ

It follows from this that the only diagram we get at second order is the following:2

β, se−

~k1

α, s′ e−

~p1

~q = ~k1 − ~p1

δ, rµ−

~k2

ρ, r′ µ−

~p2

µ

ν

This gives us the matrix element

iM = uα(p1, s
′)(−ie)γµαβuβ(k1, s)

−i
(
ηµν − (ξ − 1)

qµqν
q2

)
q2 + iε

uρ(p2, r
′)(−ie)γνρδuδ(k2, r)

where we have explicitly put in all the indices. Later in the course (once we’re more comfort-
able with the expressions) we will suppress the indices to make things neater. Now we want
to make this simpler so what do we do? Well first we note that we can contract the qµ and
qν in the numerator with the γµ and γν to give us two terms of the form

u(p1, s
′)/qu(k1, s) and u(p2, r

′)/qu(k2, r).

Why does this help us, well it turns out that we can prove3

u(p1)/qu(k1) = 0 if q = k1 − p1 (2.1)

so both of these terms vanish (as k1 − p1 = k2 − p2). So we see the gauge term does not
contribute to the matrix element no matter which gauge we take. This is very neat!

Next we note that we won’t get a pole in our denominator, and so we can drop the iε
term.4 Finally we use the metric to lower the index on one of the gammas. We are therefore
left with

iM = ie2uα(p1, s)γ
µ
αβuβ(k1, s)

1

q2
uρ(p2, r

′)(γµ)ρδuδ(k2, r).

2This is a little messy, but hopefully it’s clear enough.
3The proof of this is set as an exercise on the course.
4If this doesn’t make sense, see the IFT notes/a similar course.
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Now, as we said before, it is fundamentally the cross section we are interested in (as this
is observable) and so we want to take the complex conjugate of this and multiply by that.
How do we go about doing this? Well we use another neat result5[

u(p1, s1)γµ1 ...γµnu(p2, s2)
]∗

= u(pn)γµn ...γµ1u(p1)

which gives us

|iM|2 =
e4

q4

[
u(p1, s

′)γµu(k1, s)u(p2, r
′)γµu(k2, r)

][
u(k2, r)γνu(p2, r)u(k1, s)γ

νu(p1, s
′)
]
(2.2)

Remark 2.1.1 . Note that the complex conjugated matrix element has switched what we call
incoming momentum/spin and outgoing momentum/spin. That is the diagram for iM∗ cor-
responds to (dropping the Dirac and Lorentz indices to avoid clutter)

s′e−

~p1

s e−

~k1

~q = ~p1 − ~k1

r′µ−

~p2

r µ−

~k2

We can therefore think of taking the complex conjugate squared as somehow ‘stitching’ the
end of the diagram back to the initial state with a propagator in the middle. That is, we get
a diagram that looks sort of like two circles connected by two photon propagators.

~p1, r
~k1, s

~p2, s
′~k2, r

e− e−

µ−µ−

As we will see in a moment, this idea of joining the initial and final state particles allows us
to get some insight into the answer of the amplitude.

Equation (2.2) is the result for the specific values of s, s′, r and r′, and so as per the
Feynman rules, we need to average over initial state spins and sum over final state spins.
Recall that we have the spin sum relations

∑
s

u(p, s)u(p, s) = /p+m, and
∑
s

v(p, s)v(p, s) = /p−m, (2.3)

5Again this is an exercise on the course.
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which allows us to replace all the u/us in Equation (2.2). We do this by putting the indices
back in and then using the fact these are then just numbers (they’re the elements of the matrix)
so we can freely move them around. These indices are contracted with the gammas, though,
so we need to remember what goes with what. We see that the gammas with contravariant
indices are both contracted with the (p1, s

′) and (k1, s) terms, so these combine to give us

uα(p1, s
′)γµαβuβ(k1, s)uβ′(k1, s)γ

ν
β′α′uα′(p1, s

′) = γµαβ(/k1 +me)ββ′γ
ν
β′α′(/p1

+me)αα′

= Tr
[
γµ(/k1 +me)γ

ν(/p1
+me)

]
,

where we have introduced the definition of the trace in Dirac space. Similarly the remaining
terms give us

Tr
[
γµ(/k2 +mµ)γν(/p2

+mµ)
]
,

where the subscript of the mass means muon, it is not a Lorentz index. To avoid confusion
with contractions in the next line, we shall relabel the µ Lorentz index on the gammas by σ.
Then we average over the initial state spins which gives us a factor of 1/2 · 1/2 = 1/4, so in
total we get

〈
|iM|2

〉
=

e4

4q4
Tr
[
γσ(/k1 +me)γ

ν(/p1
+me)

]
Tr
[
γσ(/k2 +mµ)γν(/p2

+mµ)
]
. (2.4)

Remark 2.1.2 . It is now that we can return to the idea of Remark 2.1.1; we have two traces
here and we see that the content on these two traces corresponds exactly to the two connected
Fermion parts. By this we mean that the top circle in the diagram above is the content of
the first trace, while the second circle is the content of the second trace. These two pieces are
only connected by photon propagators and so they really are two separate traces. The guiding
principle is, then, the number of closed Fermion paths in our ‘stitched together’ diagram is the
number of traces we expect, and the terms contained within these parts give us the content of
the traces. We can think of this in a slightly different way as: imagine taking a pair of pliers
and snipping all the photon lines, then if you have closed Fermion paths remaining, these
give you a trace. This will perhaps be more clear later when we consider so-called Møller
scattering.

So we have reduced the problem of finding the amplitude for our scattering process to
calculating Dirac traces of our gamma matrices. We obviously now need to study what these
are, and this is the content of the next section. Firstly recall the Clifford algebra property

{γµ, γν} = 2ηµν1 (2.5)

where 1 is the identity matrix of the correct dimension, and the definition

γ5 := iγ0γ1γ2γ3. (2.6)

Exercise

Use these two relations to show that(
γ0
)2

= 1,
(
γi
)2

= −1,
(
γ5
)2

= 1, and
{
γµ, γ5

}
= 0.
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2.1.1 Interlude: Gamma Matrices

This short section just gives us some identities for the gamma matrices and their traces. We
do not prove the results here6 but simply claim they are true. They are not too hard to prove
and so the reader is encouraged to give them a go, and as a guiding starting point, the proof
of the first one is given and the rest left as implicit exercises.

We shall leave the spacetime dimension arbitrary and simply call it D.

Traces

The following expressions are true:

(i) Tr[γµ] = 0.

(ii) Tr[γµγν ] = Dηµν .

(iii) Tr[γµ1 ...γµ2n+1 ] = 0, i.e. the trace over an odd number vanishes.

(iv) Tr[γµγνγργσ] = D
(
ηµνηρσ − ηµρηνσ + ηµσηνρ

)
.

(v) Tr
[
γ5
]

= 0.

(vi) Tr
[
γµγνγ5

]
= 0.

(vii) Tr
[
γµγνγργσγ5

]
= iDεµνρσ, where εµνρσ is the 4 index Levi-Civita symbol.7

These are all traces in Dirac space.

Proof. As promised, let’s prove Tr[γµ] = 0. The key property to note is that the trace of
symmetric under cyclic permutations, that is, for example

Tr[ABC] = Tr[CAB] = Tr[BCA].

The only other things we’ll use are (γ5)2 = 1 and {γµ, γ5} = 0. We have8

Tr[γµ] = Tr[γµ1]

= Tr
[
γµγ5γ5

]
= −Tr

[
γ5γµγ5

]
= −Tr

[
γ5γ5γµ

]
= −Tr[1γµ]

∴ Tr[γµ] = −Tr[γµ],

which gives us the result. Note you don’t actully need to use γ5 for this but could just consider
some γν with ν 6= µ and obtain the same result however you have to be a bit careful with
signs there, so the γ5 calculation is easier.

6As some were set as exercises on the course, and I don’t want to type up the answers here.
7When trying to prove this one, I recommend using the answer as a guiding light. That is put in the

definition of γ5 and then see what happens if none of the other γs are γ0, then do the same for 1, 2, 3. From
this point it should be reasonably easy to get the result.

8Being more explicit then is probably required.
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Contractions

The following expressions are also true:

(i) γµγµ = D.

(ii) γµγνγµ = (2−D)γν .

(iii) γµγνγργµ = (D − 4)γνγρ + 4ηρν .

(iv) γµγνγργσγµ = (4−D)γνγργσ − 2γσγργν .

These are all traces in Lorentz space.

2.1.2 Back To The Problem

Firstly let’s use the linearity of the trace to rewrite the terms in Equation (2.4) as

Tr
[
γσ(/k1 +me)γ

ν(/p1
+me)

]
= Tr

[
γσ/k1γ

ν
/p1

]
+me

(
Tr[γσ/k1γ

ν ]+Tr
[
γσγν/p1

])
+m2

e Tr[γσγν ]

and similarly for the other expression. Now we recall that the slashed notation contains
gammas, /k1 := γµk1,µ,9 to use the trace expressions we just stated. We therefore have

Tr
[
γσ(/k1 +me)γ

ν(/p1
+me)

]
= 4
(
kσ1 p

ν
1 − ησν(k1 · p1) + kν1p

σ
1

)
+ 4m2

eη
σν ,

where k1 · p1 = kρ1p1,ρ.

Exercise

Verify the above expression holds.

We get a similiar thing for the other trace and so in total Equation (2.4) becomes

〈
|iM|2

〉
=

4e4

q4

[
kσ1 p

ν
1 − ησν(k1 · p1 −m2

e) + kν1p
σ
1

][
k2,σp2,ν − ησν(k2 · p2 −m2

µ) + k2,νp2,σ

]
=

8e4

q4

[
(k1 · k2)(p1 · p2) + (k1 · p2)(p1 · k2)− k2 · p2(k1 · p1 −m2

e)− k1 · p1(k2 · p2 −m2
µ)

+ 2(k1 · p1 −m2
e)(k2 · p2 −m2

µ)
]

where the last line follows simply by expanding and simplifying. This is a bit of an ugly
expression and so we really want to simplify it a bit further, we can do this by recalling the
Mandelstam variables:

9The comma here is just to help separate the 1 which just means particle 1 from the µ which is a Lorentz
index.
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s := (k1 + k2)2 = (p1 + p2)2

t := (k1 − p1)2 = (k2 − p2)2

u := (k1 − p2)2 = (k2 − p1)2

(2.7)

with
s+ t+ u =

∑
all particles

m2
i . (2.8)

We can use these to show that10

1

2
(s−m2

e −m2
µ) = (k1 · k2) = (p1 · p2)

1

2
(−t+ 2m2

e) = (k1 · p1)

1

2
(−t+ 2m2

µ) = (k2 · p2)

1

2
(−u+m2

e +m2
µ) = (k1 · p2) = (k2 · p1)

(2.9)

Putting these together with the fact that our diagram is a t-channel, i.e. q2 = t, out amplitude
simplifies to11

〈
|iM|2

〉
=

2e4

t2

[
(s−m2

e −m2
µ)2 + (u−m2

e −m2
µ)2 − 2(−t+ 2m2

µ)

(
1

2
(−t+ 2m2

e)−m2
e

)

− 2(−t+ 2m2
e)

(
1

2
(−t+ 2m2

µ)−m2
µ

)
− 8

(
1

2
(−t+ 2m2

e)−m2
e

)(
1

2
(−t+ 2m2

µ)−m2
µ

)]

=
2e4

t2

[
(s−m2

e −m2
µ)2 + (u−m2

e −m2
µ)2 − t(t− 2m2

µ)− t(t− 2m2
e)− 2t2

]
=

2e2

t2

[
s2 + u2 + 2(m2

e +m2
µ)2 − 2(s+ u− t)(m2

e +m2
µ)
]

=
2e4

t2

[
s2 + u2 − 4(s+ u)(m2

e +m2
µ) + 6(m2

e +m2
µ)2
]
,

where we have we used t = −s − u + 2m2
e + 2m2

µ to get to the last line. This formula is
exact but still not super neat, so let’s consider what we get if we take the high energy limit12

s, |u| >> m2
e,m

2
µ. Then our amplitude simply becomes

〈
|iM|2

〉
=

2e4(s2 + u2)

t2
(2.10)

Remark 2.1.3 . Note our particles are external states and so they are on-shell so the high
energy limit is equivalent to saying the momentum-squared is negligible, i.e. we approximate
as k2

1 = k2
2 = p2

1 = p2
2 = 0.

10Note that these are external particles and so they are on-shell, i.e. k21 = m2
e and k22 = m2

µ.
11Be careful following minus signs here.
12We take |u| as u < 0, as we will see in just a minute.
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We can then use Equation (1.4) to find the differential cross section in terms of the angle,13

dσ

dΩ
=

e4

32π2s

s2 + u2

t2
. (2.11)

We can use an imaginary collider experiment to express the right-hand side in terms of the
angle of collision. We can work in a frame with

k1 =

√
s

2

(
1, 0, 0, 1) and k2 =

√
s

2

(
1, 0, 0,−1)

p1 =

√
s

2

(
1, sin θ, 0, cos θ) and p2 =

√
s

2

(
1,− sin θ, 0,− cos θ)

(2.12)

which is displayed pictorially below:

k1 k2

p1

p2

θ

From these relations we have14

(k1 · p1) =
s

2

(
1− cos θ), and (k1 · p2) =

s

2
(1 + cos θ)

and so Equation (2.9) in the high energy limit gives us15

t = −s
2

(
1− cos θ), and u = −s

2

(
1 + cos θ),

and so
dσ

dΩ
=

e4

32π2s

s2
(
4 + (1 + cos θ)2

)
(1− cos θ)2

.

This appears to diverge as θ → 0! What did we do wrong? The answer is obviously that we
are using the high energy limit, which allowed us to set t ∼ (1−cos θ) by ignoring the masses.
The claim is if we put the muon mass back in but still neglect the electron mass16 that we
get

t ∼ (1− β cos θ), β < 1 =⇒ t > 0,

and so we’re safe.
So we have seen that calculating the matrix element and the scattering from this takes

quite a lot of work. Keeping in mind that we were just considering a simple process to lowest
order with only one diagram, it is easy to see why people often leave calculations like this to
computers. Nevertheless, it is instructive to have worked through the calculation to see what
everything is and how it all connects together.

13See Section 9.2.3 of my IFT notes for a derivation of where this formula comes from.
14Note we are using the field theorist’s signature (+,−,−,−).
15Note here we see u < 0, which is why we took the modulus before.
16This is reasonable as m2

µ ≈ 50m2
e.
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2.2 e+e− → µ+µ−

Ok let’s consider the scattering process e+e− → µ+µ− and find... Wait we’re going to do all
this again to find the cross section for this process? The answer is "yes" but we’re going to
be clever and use our result from the previous section to basically skip the entire calculation
and arrive at the result. How do we do this? We use something called crossing symmetry.

2.2.1 Crossing Symmetry

Crossing symmetry is an incredibly useful and time saving trick. Basically what it says
is that we can swap a particle/antiparticle with incoming momentum k1 for an outgoing
antiparticle/particle, respectively, with momentum −k1. Similarly we can swap an outgoing
antiparticle/particle with momentum p1 for an incoming particle/antiparticle with momentum
−p1. We can see this by considering the Feynman diagram: basically imagine ‘dragging’ the
relevant leg across the centre point and then look at where/how the arrows point. Let’s
illustrate this for a simple vertex with one particle in and one particle out. Here the red
dashed arrow is meant to represent the ‘dragging’ motion.

k1
p1

k1

p1

So we have to flip the momentum arrow direction, as momentum is always meant to flow away
from vertices, and then we have that the momentum and Fermion flow point oppositely, so we
have an antiparticle. Obviously the same diagram-intuitive explanation can be given for the
other cases of particles/antiparticles being incoming/outgoing and then being dragged over.

This is not the end of the story, however. Recall that when we take the matrix element
squared we ended up taking spin sums over our particles. This came from our stitching
procedure as illustrated in Remark 2.1.1. If we swap a particle for an antiparticle we will
change our spin sum from

∑
s u(p, s)u(p, s) to

∑
s v(p, s)v(p, s). However our process of just

flipping the sign of the momentum won’t quite give us this. We see this from Equation (2.3):∑
s

u(p, s)u(p, s) = /p+m→ −/p+m = −
∑
s

v(p, s)v(p, s).

The same obviously works out if we swap a outgoing particle/antiparticle for an incoming
antiparticle/particle. We therefore have to include a factor of (−1) for every Fermion we
move across from incoming/outgoing to outgoing/incoming.

Denoting the averaged square matrix element byM(k1, ..., kn → p1, ..., pm), we summarise
the crossing symmetry in the box below.

M(k1, ..., kn → p1, ..., pm) = (−1)fM(k2, ..., kn → p1, ..., pm,−k1) (2.13)
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where f tells us the Fermion charge of the moved particle,17 and where the bar over the k1

on the right-hand side is meant to remind us we have changed particle to antiparticle, or visa
versa.

Remark 2.2.1 . Note that the Ms appearing in Equation (2.13) are not to be confused with
iM. The latter is the non-squared, non-averaged matrix element for the diagram(s), whereas
the former is the thing that appears in the S-matrix. To be absolutely clear,

M(k1, ..., kn → p1, ..., pm) :=
〈∣∣∣∑

j

iMj

∣∣∣2〉,
where the sum is done over all the valid diagrams for the scattering process being considered.
If this is confusing, just remember that the extra (−1)f factor comes from our spin-sums
not being correct, and the spin sums obviously only appear once we take our average, 〈...〉.
This remark is just included to hopefully clear any confusion, as the notation used here is
standard.18

Remark 2.2.2 . Note that by moving the Fermion across in Equation (2.13) we are now de-
scribing a different process. That is the left-and side of Equation (2.13) describes an n→ m
scattering but the right-hand side describes a (n − 1) → (m + 1) scattering. For this reason
it’s true if you are considering an interaction with N total external particles, you could, in
principle, just find the value for the 0→ N process (i.e. all final state particles) and then use
crossing symmetry to get your desired result. To my knowledge this is rarely done in practice,
though.

Remark 2.2.3 . On a technical remark, it’s not well defined for us to say "we have an final state
particle with momentum −k1" as all particles, whether they be particles or antiparticles, have
positive momentum. This causes a technical problem for Equation (2.13) as both k1 and −k1

appear and so no matter which sign we choose for k1 we always break this physical argument.
The technically true statement is that Equation (2.13) follows by analytic continuation. This
basically just means that the mathematics will work out, so this technicality will not concern
us further.

2.2.2 The Matrix Element

Now the only diagram at first non-trivial order for our e+e− → µ+µ− scattering is the
following

k1

p1

q

k2

p2

e+

e−

µ−

µ+

17Fermions/Antifermions have Fermion charge ±1, respectively, while Bosons have Fermion charge 0. So
this formula also works for Bosonic fields.

18Some textbooks, including Peskin and Schroeder, use a slightly different notation and write it asM(φ(p)+
...→ ...), but the idea is obviously the same.
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where we have dropped all the Dirac/Lorentz indices on the diagram as we only want to
compare it to the one for e−µ− → e−µ−. We then see that we get exactly this latter mentioned
diagram if we rotate the whole diagram 90 degrees clockwise. This is equivalent to ‘dragging’
the incoming e+ into the final state and the outgoing µ+ into the initial state. We therefore
get our (high energy limit) matrix element by taking Equation (2.10) with k1 → −k1 and
p2 → −p2. We have moved two Fermionic particles and so we get a factor of (−1)2 = +1.

Now note that we labelled the momentum on the above diagram so that the ‘dragged’
diagram has the momentum labels the same, i.e. the incoming momentum is labelled by p
and the outgoing by k. It follows from this that Equation (2.7) tells us to take Equation (2.10)
and apply

s→ t, t→ s, and u→ u (2.14)

under this momentum swapping, so we get〈
|iM|2

〉
=

2e4(t2 + u2)

s2
.

Ah well that was a lot quicker then before. What about the cross section? At first you
might want to rush in and do the same thing and just apply Equation (2.14), however we
have to note something important: the factor of 1/s appearing in Equation (2.11) is the
flux factor19 and this depends only on the initial state momentum. This is fixed in our two
expressions (in both we have p1 and p2 in) and so this factor is unaffected by our crossing
symmetry. So our differential cross section is

dσ

dΩ
=

e4

32π2s

t2 + u2

s2
.

Now we can do a similar thing by considering the frame Equation (2.12), which gives us

t = −s
2

(1− cos θ), and u = −s
2

(1 + cos θ),

and so we get

dσ

dΩ
=

e4

32π2s

1

4

[
(1− cos θ)2 + (1 + cos θ)2

]
=

e4

64π2s
(1 + cos2 θ).

(2.15)

We can find the total cross using20

dΩ = dφd cos θ,

which gives us

σ =
e4

64π2s

∫ 2π

0
dφ

∫ 1

−1
d cos θ(1 + cos2 θ)

=
e4

32πs

[
cos θ +

cos3 θ

3

]cos θ=1

cos θ=−1

=
e4

12πs
.

19Again see the IFT notes for an explanation.
20In case anyone is not familiar with this notation, this is equivalent to dΩ = − sin θdφdθ but then we absorb

this minus sign to flip the integration limits. That is we would have
∫ −1

1
d cos θ otherwise.



CHAPTER 2. TREE LEVEL QED 19

We can write this in a more common notation by introducing the so-called structure constant

α :=
e2

4π
, (2.16)

to get

σ =
4πα2

3s
.

2.3 Møller Scattering

So far everything we have considered only has one diagram. When we have more then one
diagram things are a bit more complicated, this is because we have to sum the matrix elements
from each diagram first and then take the complex conjugate squared. To get some exposure
to this, let’s look at what is known as Møller scattering. This is just the scattering of two
electrons e−e− → e−e−. Here we have have both a t-channel and a u-channel:

k1, s

p1, r

q

k2, s
′

p2, r
′

e−

e−

e−

e−

and

k1, s

p1, r

q

k2, s
′

p2, r
′

e−

e−

e−

e−

where again we have dropped the Dirac/Lorentz indices on the diagram and put the spin
indices next to the momentum labels.

Remark 2.3.1 . From now on I will almost definitely use this convention of not labelling the
Dirac/Lorentz indices and putting the spin indices with the momentum. I just think it looks
neater and it also makes the Tikz less fiddly. I may also forget to label the spin/polarisation
indices on the diagrams. However they’re not too hard to just put in by hand in obtaining
the matrix elements.

We note that the diagram on the left here is exactly the same as the e−µ− → e−µ− one
we calculated before apart from now all the particles are of the same flavour. We then also
note that the diagram on the right is equivalent to the one on the left if we swap the two final
state particles. This tells us to put a relative minus sign between these two diagrams in the
sum of matrix elements.21 So we have

iM = iML − iMR =⇒ |iM|2 = |iML|2 + |iMR|2 + 2 ReMLM∗R.

This looks significantly more complicated then what we’ve been doing so far! However we
now remember our nice little trick discussed in Remarks 2.1.1 and 2.1.2. The three terms
here correspond to, respectively:

21For a more detailed explanation of this see Section 12.2.4 of my IFT notes.
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where the dashed blue lines are meant to represent out stitching procedure. Hopefully the
reader can see that the first two diagrams can be ‘cut’ into two disconnected loops as per
Remark 2.1.2: the first one is just a horizontal cut, while the second one you need to imagine
the crossing lines as going over each other, then you can see it can be cut. However for the
third diagram there is no way to cut it in half without cutting through a Fermion line.

Another way to see this (and perhaps easier to see) is to put your pen on one of the solid
Fermion lines ad then follow the Fermion flow arrows until you get back to your starting point.
For the first two diagrams there are two distinct choices, which we indicate in blue and red
below:22

However if you do this for the ReMLM∗R diagram there is only one path. This tells us that
the first two terms, |iML|2 and |iMR|2, give us two traces while the cross term, ReMLM∗R,
just gives us one big trace.

2.4 Compton Scattering

There is one type of conceptually different diagram we haven’t looked at yet: one with an ex-
ternal photon. We therefore conclude this section by looking at so-called Compton scattering,
e−γ → e−γ. There are two diagrams at first non-trivial order, they are

γ
k1

e−

k2

q

γ

p1
e−

p2

γ k1 k2

e−p1

e−

p2
γ

q

This looks like a bit of a pain because the two diagrams looks quite different. However with
a bit of thought we can see that the right-hand diagram is equivalent to one of the form

22Note that on the second diagram the red arrow is on top on the M diagram (left of dashed line) while
the blue arrow is on top on theM∗ diagram (right of dashed line). This might help see what I meant above
about being able to cut this.
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with the momentum etc labelled so it agrees with the above diagram. This is the same as the
left-hand diagram apart from the two photons are switched. As photons are Bosons we do
not incur any minus signs here but simply just have to account for the different momentum
flow through the Fermion propagator: the first diagram has q2 = (p1 +k1)2 = s while the last
diagram has q2 = (p1 − pk)2 = u.

Remark 2.4.1 . It it common to draw these two diagrams in the following form:

obviously with all the momentum etc labelled.

Let’s find the matrix element for the first, s-channel, diagram. From the Feynman rules
we have

iM1 = uα(p2, s
′)(−ieγµαδ)

−i(/q +m)δσ

q2 −m2 + iε
(−ieγνσβ)uβ(p1, s)ε

∗
µ(k2, λ)εν(k1, κ)

We then take the complex conjugate squared and notice that we expect only one trace, so
once taking the spin/polarisation sums, we get23

〈
|iM1|2

〉
=

e2

(s−m)2
Tr
[
(/p2

+m)γµ(/p1
+ /k1 +m)γν(/p1

+m)γν
′
(/p1

+ /k1 +m)γµ
′
]

×
∑
λ,κ

ε∗µ(k2, λ)εµ′(k2, λ)εν(k1, κ)ε∗ν′(k1, κ)

Now we could use the polarisation sum result

∑
λ

ε∗µ(p, λ)εν(p, λ) = −ηµν +
kµkν − kνkµ

k · k
(2.17)

with kµ = (E,~k) and kµ = (E,−~k), to simplify this answer further. However first it is
convenient to notice the following result.

Consider the gauge transformation

Aµ → Aµ + ∂µχ, with χ = iae−ip·x.

Now on-shell photons have no mass, and so p2 = 0, so we get

∂2χ ∼ p2 = 0

for on-shell photons, which fixes our gauge fixing term. However we also get εµ → εµ + apµ,
but the total matrix element (i.e. the sum of all diagrams) must be gauge invariant. So if we
set

M = εµMµ,

23Note we drop the ε term in the denominator as the complex conjugate squared gives us a ε2 term and we
take it to be small.
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then our transformation gives us

εµMµ = (εµ + apµ)Mµ =⇒ pµMµ = 0. (2.18)

This is known as a Ward identity. Physically what this tells us is that the longitudinal
polarisation of the external photons is unphysical, and so disappears from the S-matrix. This
is an important result as εµ, as it stands, has 4-degrees of freedom (one for each µ = 0, ..., 3),
but it is an experimental fact that physical photons only have 2 degrees of freedom (two
transverse polarisations). This Ward identity allows us to remove one of them.

Remark 2.4.2 . For a slightly different explanation of why the longitudinal polarisation doesn’t
contribute to the S-matrix, see Prof. Tong’s notes, page 145-6.

Why is this helpful? Well it let’s us see that the second term in Equation (2.17) will not
contribute to our amplitude at all. We are therefore just left with

〈
|iM1|2

〉
=

e2

(s−m)2
Tr
[
(/p2

+m)γµ(/p1
+ /k1 +m)γν(/p1

+m)γν(/p1
+ /k1 +m)γµ

]
.

Exercise

Find the matrix element for the other Compton scattering diagram. Also draw the
‘stitched’ diagram for the cross term that will appear between the two diagrams. Use
it to state the number of traces we expect in the final answer.



3 | QED At One Loop

So far we have only studied QED at tree level, however this by no means exhausts QED. In
fact a lot of the effort/information obtained from QED came from studying it with loops.
These loop diagrams are important because they can lead to theories being so-called non-
renormalisable, which is a property we do not want. We will see more clearly what this means
as we go forward, but for some foreshadowing, basically theories that are non-renormalisable
require that we introduce more and more constraint conditions at each order, and so for the
full perturbation we end up putting an infinite number of constraints on the system, and loose
all predictive power. This essentially renders the theory useless for any further study, but in
order to see all of this, we first need to do some work.

Let’s consider the second order in coupling (i.e. two vertices) diagram

p1

p1 + k

p2

p2 − k

µ

p1 + p2

k

ρ

ν

If we consider the high energy limit (i.e. me → 0) the matrix element for this diagram takes
the form1

iM∼
∫

d4k

(2π)4
γν

(/k − /p2
)

(p2 − k)2
γµ

(/p1
+ /k)

(p1 + k)2
γρ
ηνρ
k2
,

where we have an integral as per Feynman rule (iv). Let’s consider the behaviour of this
integral in the limits k → 0 and k →∞

• k → 0: This corresponds to the loop photon going on-shell, and when this happens the
integrand blows up. This is known as an infrared (IR) divergence and it is associated
with the exchange of photons with ultralong wavelengths, λ ∼ 1/|k|. As we will see in
detail at the end of the course, this is cancelled by emission factors.

1Note we’re using the Feynman gauge here to make the photon propagator term easier to deal with.

23
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• k →∞: In this limit we can forget about the p1 and p2 terms and so we get

iM→
∫

d4k

(2π)4

k2

k6
∼
∫ ∞

0
d|k| 1

|k|
.

This term diverges logarithmically, and is known as an ultraviolet (UV) divergence. It
corresponds to the exchange of a high energy (i.e. short wavelength) photon. This term
is not cancelled by some other contribution and so poses a big problem for us. This
is the stem of renormalisation, and a large chunk of the remainder of this course is
dedicated to dealing with things like this.

3.1 Superficial Degree Of Divergence

We saw in the last section that we obtained the divergence behaviour as k → ∞ essentially
by comparing the number of ks in the numerator to the number of ks in the denominator.
We can use this idea to define the superficial degree of divergence (SDOD).

SDOD = (number of k in numerator)− (number of k in denominator)

We call an interaction that has SDOD>0 superficially divergent and one with SDOD<0 super-
ficially convergent. The type of divergence is given by the value, e.g. SDOD=0 is logarithmic
divergence, while SDOD=2 is quadratic, etc. We include the word "superficial" because, as
we will see in a moment, superficial divergence does not gaurentee actual divergence, and
similarly for superficial convergence. The reason for this is that other factors (e.g. symmetry
factors etc) have an effect.

Can we make the SDOD easier to see just from the diagram? Well let’s consider where
the terms in our integrand come from.

(i) For each loop, we get a four-dimensional integral∫
d4k

(2π)4
.

(ii) For each internal Fermion propagator we get a factor of the form /k/k2.

(iii) For each internal photon propagator we get a factor of the form 1/k2.

So if we denote the number of each of these factors as `, If and Iγ , respectively, we get

SDOD = 4`− If − 2Iγ . (3.1)

This is a nice formula, but it requires us knowing information about the the diagram itself.
The question is "can we write the SDOD just in terms of the external particle numbers?" The
answer is yes, and the reason for which is because we only have one type of vertex for QED:
2 Fermions and 1 photon. So how do we do this, well let’s denote the number of vertices by
V and the external Fermions/photons by Ef/Eγ , respectively. Now let’s count the number
of vertices we have:
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• Photons: Each internal photon has 2 vertices, while each external photon has 1 vertex.
So we get

V = 2Iγ + Eγ .

• Fermions: Each internal Fermion has 2 vertices and each external photon has one vertex.
However we always have two Fermions meeting at a vertex, so we double count. We
therefore divide the result by 2:

V =
1

2
(2If + Ef ).

• Loops: For the internal states obviously we count the number of internal Fermions and
internal photons. However we impose momentum conservation at every vertex which
eliminates one of our 4-integrals. However we always have one delta function left over
(for total momentum conservation δ(4)(kin−pout)). Any factors we have left correspond
exactly to the loops (see the Feynman rules again for clarity), so in total we get

` = Iγ + If − (V − 1).

We can use these three expressions in Equation (3.1) to get

SDOD = 4− Eγ −
3

2
Ef . (3.2)

Exercise

Verify that Equation (3.2) does indeed follow from the three relations above.

Diagram Eγ Ef SDOD Actual L Name/Comment

0 0 4 x4 — Vacuum Bubble

1 0 3 0 — Photon tadpole

2 0 2 log FµνF
µν Photon

Propagator

0 2 1 log ψψ
Fermion

Propagator

3 0 1 0 — Vanishes by
symmetries

1 2 0 log ψAµψ
Fermion-Photon

Interaction

4 0 0 Finite — Photon
Scattering
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The above table gives some examples, where "actual" here means the physical divergence
of the process. Let’s make a couple more comments.

• The vacuum bubbles (i.e. anything with no external legs) is irrelevant to scattering.
This is simply because they do not contribute to the S-matrix, by the LSZ theorem.2

• We have drawn a photon tadpole but no Fermion tadpole. It is easy to see why, just
consider the interaction vertex we’re allowed.

• Note that all actually divergent terms correspond to some term in the Lagrangian — this
will be very useful going forward. This is a hallmark of renormalisable gauge theories.

• All diagrams with more external legs then the one’s indicated in the table above have
SDOD <0.

• Obviously we now see that the word "superficial" is needed because only one of the
SDODs in the table gives the correct answer, namely they Fermion-Photon interaction.3

The third bullet point here is the most important, and so we stress it again:

All actually divergent terms in QED correspond to terms in the Lagrangian.

As explained in the bullet point, this tells us that the theory is renormalisable (i.e. we can
fix this divergent problem at every order in perturbation theory without loosing predictive
power). Why is this the case? Well, the idea is that the fields/parameters that appear in
the Lagrangian are not measurable themselves, and so are non-physical. We can therefore try
to absorb/counteract these divergences in the Lagrangian in the hope that the final results
we get do not contain any. We can do this for QED as we have enough fields/parameters to
absorb all our divergences. This is probably rather cryptic at this point, but should become
clearer as we go forward. First, though, obviously if we are going to somehow absorb these
divergences, we need some way to actually calculate them, and this is the content of the next
section.

3.2 Regularisation

So we want a way of dealing with these IR and UV divergences. It turns out that there is
more than one way to do this, and each has its advantages and disadvantages. The following
list gives some common strategies.

• UV

(i) Cut-off Regularisation: the basic idea here is to say that we were a bit boastful to
assume that our theory would hold to arbitrarily high energies/small lengths, as
this neglects new physics that would enter at some point (e.g. quantum gravity).

2See either IFT of QFT II notes for details on the LSZ theorem.
3Well the vacuum bubble gives the correct result but it doesn’t contribute to scattering so its completely

irrelevant.
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We therefore just cut-off our integral at some finite value, which we denote Λ. For
example ∫ ∞

0
d`

`

`2 −m2
→
∫ Λ

0
d`

`

`2 −m2
∝ log Λ.

We can then think about what happens in the limit Λ → ∞. The advantage to
this approach is it seems physically reasonable and easy to validate. The major
disadvantage is that the result is generally not Lorentz-invariant and can even
violate gauge invariance.

(ii) Pauli-Villars Regularisation: The idea here to add additional fictitious heavy par-
ticle(s) who’s propagators come with an additional minus sign. That is we replace∫

d4`

(2π)4

1

(`2 −m2)2
→
∫

d4`

(2π)4

[
1

(`2 −m2)2
− 1

(`2 − Λ2)2

]
∝ log

Λ2

m2
.

The idea is we then take the limit Λ→∞, which decouples our fictitious particles
and gives us our original theory back. The advantages of this is that it is gauge
invariant.4 The other advantage (compared to the next case) is we don’t have to
alter the dimension and so our Dirac matrices are unaffected, this makes the P-V
method useful for things like Chiral phenomena. The main disadvantage is that we
often have to introduce several of these fictitious particles when looking at heavy
Fermions, and some of these remain even in the limit Λ→∞.

(iii) Dimensional Regularisation: As we have seen, at least naïvely, the logarithmic
divergences come from out integral powers matching the denominator power. The
idea of the dimensional regularisation is to replace the dimension we integrate over
by some smaller fractional dimension:∫

d4`→
∫
dD`, D = 4− 2ε,

where ε5 is some positive number, it need not be an integer. We then take the
limit ε → 0 at the end to regain 4-dimensions. Despite this looking like a strange
thing to do, it is the most commonly used approach and the one we will use here,
so hopefully confusion will be removed going forward. The reason this method is
so popular is that it maintains both Lorentz invariance and gauge symmetries. It
also happens to regularise our IR divergences, allowing us to hit two birds with
one stone.

• IR

(i) Mass Regularisation: The IR divergences are associated with the emission of mass-
less particles, so this approach basically says "introduce a small mass for all mass-
less particles". The obvious problem with this is that, as we have (sort of) explained
above, the massless condition of the photon is needed in order to get the correct
number of degrees of freedom. That is, the masslessness of the photon allows us to

4Apparently it is not gauge covariant, though, which means that it is not useful in QCD. Info from wiki.
5This has nothing to do with the ε that appears in the denominator of the propagator.

https://en.wikipedia.org/wiki/Pauli\T1\textendash Villars_regularization
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remove one of the 4 degrees of freedom in Aµ, getting us to our two physical polar-
isations. This stems essentially from gauge invariance. Therefore if we introduce
a mass we break our gauge invariance.

(ii) Dimensional Regularisation: As mentioned above, this deals with both the UV and
IR divergences at the same time.

3.2.1 Dimensional Regularisation

Given the points made above, let’s look into dimensional regularisation. However before we
do this we need to make some comments on how this affects the dimensions of things in our
theory. Recall that in QFT we work in so-called mass dimensions by setting ~ = c = 1. This
allows us to categorise the dimensions of everything by a number, the mass dimension. Recall
also that S ∼ ~ and so in mass dimensions we require, for D-dimensions:6

[S] = 0 ⇐⇒ [L] = D,

where the second line follows from the fact that the action and integral are related by a
D-dimensional integral.7 We can use these to obtain the dimensions of our fields from the
Lagrangian, Equation (1.3).

Exercise

For a D-dimensional theory, show that

[ψ] = [ψ] =
D − 1

2
, and [Aµ] =

D

2
− 1.

Then use these results to show that

[e] = 2− D

2
, =⇒ [α] = 4−D, (3.3)

where α is the structure constant, Equation (2.16). Hint: Recall that [m] = 1 = [∂µ].

Equation (3.3) is a problem: it tells us that, unless D = 4, our coupling strength is a
dimensionful quantity. This is not something we want. Why? Well note that e appears in
our matrix elements iM and squaring these gives us the scattering amplitude, which is a
probability. This result must be dimensionless, and so we also require that e is dimensionless.
In our dimensional regularisation, where D < 4, we therefore need to redefine our coupling
via

e := eµ−2+D
2 , α := αµD−4

where [µ] = 1, which gives us [e] = 0 = [µ]. It is the e/α that will appear in our scattering
amplitudes.

The obvious question to ask is "what is µ physically?" Well as we just said it is included
to ensure that our scattering amplitudes are dimensionless, and so it has to be something we

6If this notation doesn’t make sense, go back to your introductory field theory course, it will (or at least
should) be explained in there.

7Recall that [dxµ] = −1.
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can always include, and it must have [µ] = 1. With a bit of thought it becomes clear that the
only thing available to us is the energy of the experiment. In fact we are going to relate it to
the momentum, i.e.

µ ∼ p, (3.4)

as this has the same dimensions and will be important when considering running couplings
later on.

Remark 3.2.1 . Note that it is important that D < 4 otherwise we get [α] < 0 which follows
through to saying we have to include positive powers of µ in our definitions of e/α. In other
words our scattering amplitudes would go as

|iM|2 ∼ ppositive number,

and so our scattering process becomes more and more likely the higher our energies. This
translates into saying the coupling increases with energy, and we approach a point where
our perturbative expansion breaks down. This doesn’t concern us here as we take D < 4,
however problems exactly like this do arise in theories were the parameters appearing in the
Lagrangian have negative mass dimensions. This leads to a non-renormalisable theory and
we either have to replace it with some bigger theory or only study the theory at low energies.
The latter condition is what is known as effective field theory, and perhaps the most famous
example is quantum gravity. For a bit more information on effective field theories see my
QFT II notes, section 4.5.

3.2.2 Scalar D-Dimensional Integral

Ok so we want to compute integrals like

I1 =

∫
dDk

(2π)D
1

(k2 −m2 + iε)n
, n ∈ N. (3.5)

In order to do this we are going to need some mathematical identities. We list them here.

(i) Schwinger Representation:

1

an
=

1

Γ(n)

∫ ∞
0

dt tn−1e−ta, (3.6)

where Γ(n) is the so-called Gamma function

Γ(z) :=

∫ ∞
0

dt tz−1e−t Re(z) > 0, (3.7)

and obeying
Γ(0) = 0 and Γ(n) = (n− 1)! n ∈ N

(ii) Wick Rotation: The idea of a Wick rotation is to complexify our integration variable
in such a way as to not effect the result of our contour integral. Basically we can
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rotate as we like as long as our contour integral encloses the same poles. The poles of
Equation (3.5) are8

k0 = ±
√
~k2 +m2 ∓ iε.

We can therefore do our Wick rotation to move from integrating k0 over the real line to
integrating it over the imaginary axis:

Re k0

Im k0

where the blue line is meant to represent our original integral and the red dashed line
is our Wick rotation. The reason we do this is because it sends

k → kE := (ik0,~k) =⇒ k2
E = −‖kE‖2,

where ‖ · ‖2 is the standard Euclidean inner product (hence the subscripts). Our k0

integral then becomes

i

∫ ∞
−∞

dk0
E

(−1)n(
(k0
E)2 + ~k2

E +m2 − iε
)n (3.8)

(iii) D-Dimensional Gaussian Integrals: We can extend the Gaussian integral∫ ∞
−∞

dx e−x
2

=
√
π

trivially to obtain ∫ ∞
−∞

dDke−‖kE‖
2

= πD/2. (3.9)

This is formally valid for D ∈ N, however we take an analytic continuation to account
for all D.

Ok let’s return to Equation (3.5):

I1 = i

∫
dDkE
(2π)D

(−1)n

(‖kE‖2 +m2 − iε)n

=
i(−1)n

Γ(n)

∫
dDkE
(2π)D

∫ ∞
0

dt tn−1e−t(‖kE‖
2+m2−iε)

=
i(−1)n

(2π)DΓ(n)

∫ ∞
0

dt tn−1e−t(m
2−iε)

∫
dDkE e

−t‖kE‖2

8To see how to take the iε out the integral see, e.g., page 41 of my IFT notes.
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where we have used Equations (3.6) and (3.8) and the used the fact that our integrals are
finite to swap the order of integration. Let’s now set the denominator9 ε = 0 as it has served
its purpose10 and change variables to

k′E :=
√
tkE , =⇒ dDkE = t−D/2dDk′E

giving us

I1 =
i(−1)n

(2π)DΓ(n)

∫ ∞
0

dt tn−1e−tm
2
t−D/2

∫
dDk′Ee

−‖k′E‖
2

=
i(−1)nπD/2

(2π)DΓ(n)

∫ ∞
0

dt tn−1−D/2e−tm
2

=
i(−1)n

(4π)D/2Γ(n)

(
m2
)−n+D/2

∫ ∞
0

dt′(t′)(n−D/2)−1e−t
′

=
i

Γ(n)

(−1)n

(4π)D/2
(
m2
)−n+D/2

Γ

(
n− D

2

)
=

i

Γ(n)

(−1)n

(4π)2−ε
(
m2
)−n+2−ε

Γ
(
n− 2 + ε

)
where we have used Equation (3.9), defined t′ = m2t, then used the definition Equation (3.7)
backwards, and then put in the definition D = 4− 2ε.

Now let’s look at what happens for n = 2. We get

I1 =
i

Γ(2)

1

(4π)2−ε
(
m2
)−ε

Γ(ε), (3.10)

but if we then take the limit ε→ 0 we get Γ(0) = 0. This is a problem because if we set n = 2
with ε = 0, then we have

I1 =

∫
d4k

(2π)4

1

(k2 −m2 + iε)2
,

which in the limit k → ∞ diverges logarithmically, however we have just shown that this
result vanishes. Where are the UV singularities going? Well let’s look at the result for ε > 0
but small.

Claim 3.2.2 . The Laurent expansion of Γ(z) around z = 0 is

Γ(z) =
1

z

(
1− γEz +O(z2)

)
, (3.11)

where γE is the so-called Euler constant.

Proof. 11 Let’s start with the definition, Equation (3.7):

Γ(z) =

∫ ∞
0

dt tz−1e−t.

9Not the ε in D = 4− 2ε.
10Really we could have done this after the Wick rotation.
11Based on the one given on Stack Exchange.

https://math.stackexchange.com/questions/1287555/how-to-obtain-the-laurent-expansion-of-gamma-function-around-z-0
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Now do an integration by parts with

u = e−t, and dv = tz−1 =⇒ v =
tz

z
.

Direct calculation gives us

Γ(z) =
1

z

∫ ∞
0

dt tze−t.

Now use the expasion

tz =

∞∑
n=0

zn

n!
logn(t),

giving us

Γ(z) =
1

z

∞∑
n=0

zn

n!

∫ ∞
0

dt logn(t)e−t

=
1

z
+

∫ ∞
0

dt log(t)e−t +
1

2
z

∫ ∞
0

dt log2(t)e−t + ...,

so if we define
−γE :=

∫ ∞
0

dt log(t)e−t ≈ −0.577...,

we get the result Equation (3.11).

We can use the result of this claim along with(
m2
)−ε

= e−ε logm2
= 1− ε logm2 +O(ε2)

(4π)2−ε = (4π)2e−ε log 4π = (4π)2
(
1− ε log 4π) +O(ε2)

)
to give us (using Γ(2) = 1! = 1)

I1 =
i

(4π)2

[
(1 + ε log 4π)

(
1 + ε logm2

)1

ε

(
1− γEε

)]
+O(ε2)

=
i

(4π)2

[
1

ε
+ log

(
4πe−γEε

m2

)]
+O(ε),

so we see in the limit ε → 0 we do still get a divergence. This result is telling us that the
IR/UV singularities come from picking up the 1/εn poles.

Exercise

Show that for n = 3 we get a finite result:

I1(n = 3) = − i

32π2m2

(
1 +O(ε)

)
.

This agrees with the fact that Equation (3.5) tells us we should get a convergent result.
Hint: First use integration by parts to show

Γ(1 + x) = xΓ(x) x ∈ R+,

and then manipulate the expression for n = 3 so that you can use the n = 2 result.
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Remark 3.2.3 . Now there is a very fair question/complaint you could raise at this point: we
just said that Equation (3.5) gives a logarithmic divergence for n = 2 but our dimensional
regularisation has given us a 1/ε divergence. These are both divergences, true, but the former
is wildly more divergent then the latter, so what gives? Surely this can’t be describing the
same physics? The answer is "you’re correct it is not the same physics; we have changed the
dimensions of our spacetime!" This only raises the question of "ok so if we’ve changed the
physics why are we even discussing this?" The answer to that one is a bit more subtle, and
here we just give a claim that settles it. The claim is that our final result, in any regularisation
scheme, will turn out to ‘split’ into two terms, with the first containing all the physics and
the second containing the divergent parts, which are dependent on the regularisation scheme.
The idea is then to cancel these divergent parts without affecting the physical bit. It turns
out that we can do exactly this, and so, although the physics we study during the calculation
is regularisation scheme dependent, our final result is the same no matter which we choose.
This is a highly non-trivial claim, which is why we don’t prove it here.

Terms With m = 0

What happens if we consider m = 0? Well then we have

I1,m=0 =

∫
dDk

(2π)D
1

k2n
,

which, using [k] = 1, tells us
[I1,m=0] = D − 2n,

and we also require that it is a Lorentz scalar (as there are no indices present). However we
do not have any Lorentz scalars that are dimensionful (as m = 0) so we are forced to conclude

I1,m=0 = 0.

Indeed we can see this result easily from Equation (3.10).

More Complicated Propagators

We can also compute more complicated looking propagators. For example consider

Iq,n =

∫
dDk

(2π)D
1

(k2 − 2kq −m2)2
.

We will get terms like this for loop integrals where the propagators have momentum (q−k), as
the denominator will contain a (k− q)2 term. If we change integration variables as k′ = k+ q,
we get

Iq,n =

∫
dDk′

(2π)D
1(

(k′)2 − (q2 +m2)
)2 .

We can then repeat our entire calculation from above but now with m2 → q2 + m2, so the
result is

Iq,n =
i

Γ(n)

(−1)n

(4π)2−ε
(
m2 + q2

)−n+2−ε
Γ
(
n− 2 + ε

)
Remark 3.2.4 . Note here we do not need the result to vanish when m = 0. Why? Well
because now we have the Lorentz scalar q2 in our problem so we can express the result in
terms of it. Indeed this is exactly what the above expression gives us.
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3.2.3 Tensor Integrals

We’ve looked at scalar integrals, but we know these by no means exhaust the kinds of integrals
we should expect. For example, recall that the Fermion propagator contains a term

/k

(k2 −m2 + iε)
, /k := γµkµ.

The results of the integrals over these types of expressions, then, are tensors (i.e. they have
components). We can use this fact to obtain the general form of the answers.

Single Index

First let’s consider the integral with a single index kµ:

Iµn :=

∫
dDk

(2π)4

kµ

(k2 −m2 + iε)n
.

Now the result has to have a single Lorentz contravariant index, but it can’t come from a kµ

as we integrate them all out. We do not have anything else at our disposal in this integrand
and so we have to conclude that this vanishes, i.e. we have the (1,0)-tensor 0µ which vanishes
for all µ = 0, ..., D−1. We can also see this result from the fact that we are doing a symmetric
integral over an odd function, i.e. Iµn → −Iµn under k → −k.

Two Indices

Next let’s consider something with two indices, i.e.

Iµνn :=

∫
dDk

(2π)4

kµkν

(k2 −m2 + iε)n
.

Again the result must have two contravariant indices and neither can come from a kµ term.
However we also have the metric in our problem, and so we have

Iµνn = Cηµν ,

where C is some undetermined scalar factor. We can find the form of this by considering the
contraction

ηµνI
µν
n = DC,

where we have used ηµνηµν = D. We will return to this just after Example 3.2.7 below.

3.2.4 Integrals With More Than One Propagator

Everything we have considered above corresponds to a single propagator term, however terms
that only contain a single propagator are necessarily tree level and so we do not have any of
the divergent problems at all.12 So if we are to deal with loops, we must extend the above
expressions to deal with terms with more than one propagator, i.e. things of the form∫

dDk

(2π)D
1

k2(k − p)2
.

12Recall that tree level diagrams don’t have any integrals left over.
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In order to solve these as we did above, we need to come up with an extension of the
Schwinger representation, Equation (3.6). The claim is that it extends to

a−n1
1 ...a−nmm =

1∏m
i=1 Γ(ni)

∫ ∞
0

( m∏
i=1

dti t
n1−1
i

)
e−

∑m
i=1 tiai . (3.12)

We can simplify this by defining

t :=

m∑
i=1

ti, ti := txi

with 0 ≤ xi ≤ 1 obeying
m∑
i=1

xi = 1.

This allows us to change our integration variable as

dti t
ni−1
i = tnidxi x

ni−1
i .

From this, we can manipulate the following identity

1 =

∫ ∞
0

dt δ

(
t−

m∑
i=1

ti

)

=

∫ ∞
0

dt δ

(
t

[
1−

m∑
i=1

xi

])

=

∫ ∞
0

dt

t
δ

(
1−

m∑
i=1

xi

)
.

If we insert all of this into Equation (3.12), we get (suppressing the labels on some of the
sums/products for notational reasons)

a−n1
1 ...a−nmm =

1∏
Γ(ni)

∫ ∞
0

dt

t

∫ 1

0

m∏
i=1

dxi x
ni−1
i δ

(
1−

m∑
i=1

xi

)
t
∑
nie−t

∑
xiai

=
1∏

Γ(ni)

∫ 1

0

m∏
i=1

dxi x
ni−1
i δ

(
1−

m∑
i=1

xi

)∫ ∞
0

dt t
∑
ni−1e−t

∑
xiai

=
1∏

Γ(ni)

∫ 1

0

m∏
i=1

dxi x
ni−1
i δ

(
1−

m∑
i=1

xi

)
Γ
(∑

ni
)(∑

xiai
)∑ni

,

where the last line follows from the definition of the Gamma function, Equation (3.7).
We set a couple of simple exercises here as some examples that will be instrumental to

the calculations going forward.
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Exercise

Use the above relation to show

1

AB
=

∫ 1

0
dx

1(
xA+ (1− x)B

)2 (3.13)

1

ABC
= 2

∫ 1

0
dx

∫ 1−x

0
dy

1(
xA+ yB + (1− x− y)C

)3 (3.14)

and
1

A2B
=

∫ 1

0
dx

x(
xA+ (1− x)B

)3 (3.15)

We call these Feynman Parameters. Hint: For the last relation you can simply differ-
entiate the first result w.r.t. A instead of doing the full calculation again.

Example 3.2.5 . Let’s do an actual example with two propagators. Consider

I2 =

∫
dDk

(2π)D
1

k2
[
(p+ k)2 −m2

]
which corresponds to the Feynman diagram

p p+ k p

k

We can use Equation (3.13) to write this integral as

I2 =

∫
dDk

(2π)D

∫ 1

0
dx

1[
x
(
(p+ k)2 −m2

)
+ (1− x)k2

]2
=

∫ 1

0
dx

∫
dDk

(2π)D
1[

k2 + 2x(p · k) + xp2 − xm2
]2

=

∫ 1

0
dx

∫
dDk′

(2π)D
1[

(k′)2 −∆
]2

where in the last line we have used k′ = k + xp and defined13

∆(x) = xm2 − x(1− x)p2.

13Bonus exercise: fill in the gaps in-between the last two lines above.
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The inner integral is now in the form we calculated above, and so we can use our results to
obtain

I2 =

∫ 1

0
dx

i

(4π)D/2
Γ

(
2− D

2

)
∆(x)−2+D/2

=
i

(4π)D/2
Γ(ε)

∫ 1

0
dx∆(x)−ε

This integral over ∆(x) looks horrible, but we just claim that if you do it in the limit ε→ 0
(i.e. D → 4) and use our Laurent expansion for Γ(ε) in this limit we get

I2 =
1

16π2

[
1

ε
+ log

(
4πe−γE

)
+ 2− m2

p2
log
(
m2
)

+
m2 − p2

p2
log
(
m2 − p2

)]
+O(ε).

As we will see going forward, this finite term outside the pole 1/ε is not of vast importance to
us (we will deal with them at the end) and so we shall just refer to terms like this as + finite.

Example 3.2.6 . Now let’s look at a example as a tensor integral, in particular the integral

Iµ2 =

∫
dDk

(2π)D
kµ

k2
[
(p+ k)2 −m2

]
We might try and rush in and say "we saw earlier that things with a kµ in the numerator
vanish, so this is zero." However we have to be careful: that result came when we had the
denominator in our single propagator form, i.e. (k2 −m2)−n, but that is not the case here.
Instead what we have to do is repeat the process for the previous example and obtain

Iµ2 =

∫ 1

0
dx

∫
dDk′

(2π)D
(k′)µ − xpµ[
(k′)2 −∆

]
Now we can split this into two terms (given by the numerators) and say that the one with
the (k′)µ vanishes by antisymmetry. We are therefore left with

Iµ2 = −
∫ 1

0
dx

∫
dDk′

(2π)D
xpµ[

(k′)2 −∆
]

= −pµ i

(4π)D/2
Γ
(
2− D

2

)
Γ(2)

2F1,

where 2F1 is a hypergeometric function that is the result of the integral term we get left over.
This is just some finite number and so we have in the limit ε→ 0,

Iµ2 = −pµ i

16π2

1

ε
+ finite.

3.2.5 Passarino-Veltman Reduction

The arguments we made above about guessing the result of the integral given the index
structure is part of what is known as Passarino-Veltman reduction. The idea is to start with
the ansatz of a linear combination of all objects with the correct tensor structure and then
convert these into scalar integrals using contractions. This is probably best illustrated with
some more examples.
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Example 3.2.7 . Consider again

Iµ2 =

∫
dDk

(2π)D
kµ

k2
[
(k + p)2 −m2

] .
This has a single index and so our result needs to have one too. As we’ve said a few times,
we cannot use kµ itself because we’re integrating it out, however we can use pµ, so we expect

Iµ2 = Cpµ

for some yet undetermined constant C. We find this using contractions. We need to contract
a single index, and the only thing we have available to do that is pµ, so that’s what we do:

pµI
µ
2 =

∫
dDk

(2π)D
k · p

k2
[
(k + p)2 −m2

] = Cp2.

We then use some kind of trick to express the numerator in terms of things in the denominator
to help simplify the problem. Here this corresponds to using

k · p =
1

2

[
(
(
k + p)2 −m2

)
− k2 − p2 +m2

]
,

which can be verified by simply expanding the right-hand side out. We therefore have

pµI
µ
2 =

1

2

∫
dDk

(2π)D

[
(k + p)2 −m2

]
− k2 − p2 +m2

k2
[
(k + p)2 −m2

]
=

1

2

∫
dDk

(2π)D

[
1

k2
− 1

(k + p)2 −m2
+

−p2 +m2

k2
[
(k + p)2 −m2

]]
These are now all scalar integrals, so we can express them in terms of I1:

pµI
µ
2 =

1

2

[
I1 + I1(p2,m2)− (p2 −m2)I2(p2,m2)

]
.

Finally we just ‘remove the contraction’ by multiplying by the inverse:

Iµ2 =
pµ

2p2

[
I1 + I1(p2,m2)− (p2 −m2)I2(p2,m2)

]
,

where we note the p2 in the denominator, which is there so that if we now contract with pµ
on both sides we get the previous expression back.

Exercise

Use the result
I1(n) =

i

Γ(n)

(−1)n

(4π)D/2
(
m2
)−n+D/2

Γ

(
n− D

2

)
to show that

Iµνn =
ηµν

2(n− 1)
I1(n− 1). (3.16)

Hint: You will want to use the result Γ(1 + x) = xΓ(x) at some point.
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3.2.6 Tensor Integrals From Scalar Integral

There is another way to obtain the tensor integrals from a known scalar integral that includes
a (k + p) in it: simply differentiate w.r.t. pµ. That is if we have the integral

I(p) =

∫
dDk

(2π)D
...

1

k · p
...,

then we have

Iµ(p) =
∂

∂pµ
I(p) =

∫
dDk

(2π)D
...
−pµ

(k · p)2
...,

and similarly14

Iµν(p) =
∂2

∂pνpµ
I(p) =

∫
dDk

(2π)D
...

pµpν

(k · p)2
... .

3.3 Renormalisation

Ok so we have a way to compute the divergences of our integrals and we have seen they come
as 1/ε poles. The idea of renormalisation is to add additional terms to our Lagrangian that
exactly cancel these pole terms. These additional terms will give some new Feynman rules,
and so we will have a way to depict this renormalisation in terms of Feynman diagrams, which
is pretty neat.

Altering the Lagrangian in this way might seem like a strange thing to do, but we have
to remember that the fields/parameters that appear in the Lagrangian are not measurable,
and so are non-physical. We call these parameters the bare parameters, and we give them a
subscript B. So our bare QED Lagrangian is

L = ψB(i/∂ +mB)ψB −
1

4
(FB)µνF

µν
B −

1

2ξ

(
∂µA

µ
B

)2 − eBψB /ABψB.
As we just said above, the idea is to define the renormalised fields/parameters, which we

give a subscript R, so that these new fields cancel all our of divergence poles. We define these
as

ψB = Z
1/2
2 ψR, AµB = Z

1/2
3 AµR, mB = ZmmR, eB =

Z1

Z2Z
1/2
3

eR, ξB = ZξξR.

(3.17)

Note the powers of 1/2 on the field terms, this is because they appear quadratically in the
Lagrangian, and so this way they will appear nicer. It’s for a similar reason we have defined
eR the way we have. It is into these Z factors that we absorb all the UV divergences. It
turns out (as will be explained later) that we can do this to all orders of perturbation theory
for QED using what are known as renormalisation conditions. We will be left with finite
terms (as we had in our integrals above), and we deal with these by comparing the theory to
experiment. That is pick a renormalisation scheme which sets the finite terms to something,

14The factor of 2 from the differentiation is included in the "..." factors. Here we are just interested in the
fraction factor.
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and then we calculate scattering probabilities relative to this measurement. From here we
can predict all other measurements.

It is exactly because we can absorb all the UV divergences into our Z factors at any order
that we can predict all other measurements. If, on the other hand, at each other we had
to introduce more and more measurement constraints on the system we would continuously
loose predictive power until we were left with nothing. This does not mean we won’t be able
to predict something to some fixed order in perturbation theory, just that we cannot do it
for the full perturbation series. We stress again that it is a special property that QED that
allows us to predict all other results given our renormalisation scheme.

Remark 3.3.1 . It is likely that the above description is confusing. My advice would be to
work through the next part of the notes and then return and read it again. It is included here
to give some motivation for the work that follows.

Our Lagrangian in terms of the renormalised parameters is

L = iZ2ψR/∂ψR − Z2Zmm
2
RψRψR − Z3

1

4
(FR)µνF

µν
R −

Z3

Zξ

1

2ξR
(∂µA

µ
R)2 − Z1eRψR /ARψR

= iψR/∂ψR + i(Z2 − 1)ψR/∂ψR − ...−
1

4
(FR)µνF

µν
R (Z3 − 1)− 1

4
(FR)µνF

µν
R + ...,

(3.18)

where the second line is a suggestive simple reexpression of the first line. It is done for the
following reason: we see that we now have our Lagrangian looking like its original form (i.e.
terms like iψ/∂ψ etc) but with each term repeated with a prefactor (Zi − 1). These original
terms will obey the usual Feynman rules and will generate the 1/ε poles of our UV divergence.
As we will see shortly, our Zis will take the form

Zi = 1 +
α

ε
Ci,

for some finite factor Ci, and so can be used to cancel the poles from our normal Feynman
rules. We indicate the new Feynman rules with little crossed out circles, for example

∼ (Z2 − 1)

∼ (Z3 − 1)

∼ (Z1 − 1)

Remark 3.3.2 . Now we might ask why are we only considering the Zis to first order in α ∼ e2?
That is why not consider higher order couplings, e.g. α2 ∼ e4? The answer is we know α
is small (as e is small, otherwise our perturbation series is ill-defined), and take a Taylor
expansion. It is important to note, though, that we are also dividing by ε which we take the
limit ε → 0, and so things are more subtle. The idea is that we will not take the limit until
the end, and so during our calculations ε is some finite number. Our Taylor approximation is
then done in powers of α/ε which we assume is small.

Ok, let’s find these renormalisation factors. To do this we need to find the exact divergence
behaviour of each term. We shall work through them in turn.
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3.3.1 Electron Self Energy

First let’s consider the propagation of an electron (i.e. a Fermion), denoted Sf (p). To zeroth
order this is simply the propagator

=: S0
f (p)

where we have introduced our notational definition S0
f (p) (this will come in handy very

shortly). Now it’s clear that there is nothing to first order in coupling that doesn’t have
an external photon too, that is the photon line has to connect to our Fermion line at both
ends. Indeed it’s clear only even order terms will contribute. At second order there is only
one diagram

At fourth order we get three diagrams

where on the last one the broken photon line is obviously meant to be joined ‘behind’ the other
one. Now we notice that the latter two diagrams are completely new but that the first one is
essentially just two copies of the second order diagram. This motivates the next definition.

Definition. [1-Particle Irreducible] Take any Feynman diagram and ask the question "Can
I cut across any line here and get two separated diagrams of lower order?" if the answer is
"no" then the diagram is called 1-particle irreducible (1PI). That is they are ‘not splitable’.
We denote them by −iΣ(p), and draw them as

−iΣ(p) = 1PI

For further clarity, the following order 6 diagram is not 1PI as we can chop it down the
red dashed line and get two 1PIs:

On the other hand the following order 6 diagram is 1PI:
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Why are we talking about 1PIs? Well we note15 that we can express the full Sf (p) as the
following sum

Sf (p) = + 1PI + 1PI 1PI +...

which as a mathematical expression reads

Sf (p) = S0
f (p) + S0

f (p)
(
− iΣ(p)

)
S0
f (p) + S0

f (p)
(
− iΣ(p)

)
S0
f (p)

(
− iΣ(p)

)
S0
f (p) + ...

= S0
f (p)

∞∑
n=0

[
− iΣ(p)S0

f (p)
]n
,

where the second line should be clear to see.16 Now the last line looks like a geometric series

∞∑
n=0

rn =
1

1− r
,

however we need to remember that S0
f (p) contains γµ and so is a matrix expression. Despite

this we will use an abuse of notation and write

Sf (p) =
S0
f (p)

1 + iS0
f (p)Σ(p)

.

where we note the switch of order in S0
f and Σ in the denominator. We then restore some

sort of notational dignity back by rewriting this as

S−1
f (p) =

(
S0
f

)−1
(p)
[
1 + iS0

f (p)Σ(p)
]

=
(
S0
f

)−1
(p) + iΣ(p).

Exercise

Given

S0
f (p) =

i(/p+m)

p2 −m2
,

verify that (
S0
f

)−1
(p) = −i(/p−m).

Hint: Just show the result obeys the definition of the inverse.

We can then put all this together and conclude that the Fermion propagator is given by

S−1
f (p) = −i

[
/p−m− Σ(p)

]
. (3.19)

15If you don’t see this, just stare at it for a moment and it should become obvious.
16And hopefully there is no confusion between the sum and the 1PI symbol. I would change symbol but it

is standard.
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Remark 3.3.3 . Sometimes people use the notation Sf (p) → iSf (p), which corresponds to
S−1
f (p)→ −iS−1

f (p), so we cancel the −i factor in Equation (3.19).

Ok so we have a formula for the full Fermion propagator, we now want to find its pole
structure. Clearly this is going to come from the Σ(p) term, and so we need to find it
explicitly. Obviously the expression for Σ depends on how many 1PIs we consider, i.e. do we
just consider the leading order 1PI:

or do we also include the second order 1PIs:

It is normally a sensible idea to start with the simplest case and see what that can tell us
about the higher order terms. We therefore consider just the leading order diagram. Putting
the momentum labels on, this is

p p+ k p
ν µ

k

Using the Feynman rules, we see that this corresponds to the integral17

−iΣ(p) =

∫
dDk

(2π)D
(−ieγµ)(−iηµν)i(/p+ /k +m)(−ieγν)

k2
[
(p+ k)2 −m2

]
= −e2

∫
dDk

(2π)D
γµ(/p+ /k +m)γµ

k2
[
(p+ k)2 −m2

] .
Now we can use the identity from before

γµγνγµ = (2−D)γν , and γµγµ = D

to push the γµ through the (/p+ /k +m) to obtain:

−iΣ(p) = −e2

∫
dDk

(2π)D
(2−D)(/p+ /k) +Dm

k2
[
(p+ k)2 −m2

] .

Now we use our Feynman parameter relation Equation (3.13) along with the substitution
k′ = k + xp to give us

−iΣ(p) = −e2

∫ 1

0
dx

∫
dDk′

(2π)D
(2−D)(/k

′
+ (1− x)/p) +Dm[

(k′)2 − (xm2 − x(1− x)p2)
]2 .

17Note we’re using Feynman gauge. Note also that the external states are not contained in −iΣ. That is
we do not have u/u factors here.
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Now we note that /k′ term vanishes because it is an odd integral, and then we can use our I1

result to express the rest in terms of Gamma functions:

−iΣ(p) = −e2 i

(4π)2−εΓ(−ε)
∫ 1

0
dx
[
(2−D)(1− x)/p+Dm

][
xm2 − x(1− x)p2

]−ε
= − ie2

16π2

(
1

ε
− γE

)∫ 1

0
dx
[(
− 2(1− x)/p+ 4m

)
+ ε
(
2(1− x)/p− 2m

)]
×
[
1− ε log

(
xm2 − x(1− x)p2

)]
,

where the second line follows by taking the limit ε → 0. Now, as before, we can drop the
O(ε) terms and consider just the pole and the finite term. Now we have e in here which is a
dimensionful quantity when D 6= 4, so we need to replace it with the dimensionless e,

e = eµε.

In fact we will use α as we have e2 in our expression. We therefore make the substitution

e2

4π
= α = αµ2ε = α

(
1 + ε logµ2

)
,

where the last equality comes from the expansion in the ε→ 0 limit. We therefore have

Σ(p) =
α

4π

[(
1

ε
− γE

)∫ 1

0
dx
[
− 2(1− x)/p+ 4m

]
+

∫ 1

0
dx
[
2(1− x)/p− 2m

]
−
∫ 1

0
dx
[
− 2(1− x)/p+ 4m

]
log

(
xm2 − x(1− x)p2

4πµ2

)]
+O(ε)

=
α

4π

[(
1

ε
− γE

)
(−/p+ 4m) + /p− 2m

+ 2

∫ 1

0
dx
[
(1− x)/p− 2m

]
log

(
xm2 − x(1− x)p2

4πµ2

)]
+O(ε)

where the second equality comes simply from evaluating some of the integrals and factoring
out −2 in the log integral. We now invoke the claim that this latter integral is finite and
conclude that

Σ(p) =
α

4π

[
1

ε
(−/p+ 4m) + finite

]
. (3.20)

3.3.2 Photon Self Energy: Vacuum Polarisation

We can do the same kind of thing for the photon propagator and we see the 1PI factor is
given by a two index object, which we denote −iΠµν(p). That is

−iΠµν(p) =
µ ν

1PI
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Again we will find this at leading order, i.e. one loop. The diagram is simply

p

µ

p

ν

k

k + p

We then convert this into a mathematical expression, where we remember that we have to
include a factor of (−1) because we have a Fermion loop (see condition (v)(a) of the Feynman
rules). We also note that we have a closed Fermion path so we expect to get a trace, as we
have been for our amplitudes. We therefore have

−iΠµν(p) = −(−ie)2

∫
dDk

(2π)D
Tr
[
i(/k +m)γνi(/k + /p+m)γµ

][
k2 −m2

][
(k + p)2 −m2

] .

We now employ the, by now, familiar tricks of using the Feynman parameter relation, Equa-
tion (3.13), and defining k′ = k + xp,18 as well as the trace relations for the gamma matrices
to obtain

−iΠµν(p) = −e2µε
∫ 1

0
dx

∫
dDk

(2π)D
Tr
[
(/k − x/p+m)γν(/k + (1− x)/p+m)γµ

][
k2 −

(
m2 − x(1− x)p2

)]2
= −e2µε

∫
dDk

(2π)D
8kµkν − 8x(1− x)(pµpν − p2ηµν)− 4ηµν

[
k2 −

(
m2 + x(1− x)p2

)][
k2 −

(
m2 − x(1− x)p2

)]2 .

Now we note that the first term and the last term are of the form Equation (3.16), i.e.∫
dDk

(2π)D

[
kµkν[

k2 −
(
m2 − x(1− x)p2

)]2−ηµν2

1[
k2 −

(
m2 − x(1− x)p2

)]] = Iµν2 −
ηµν

2(2− 1)
I1(2−1),

and so they cancel. This tells us that our result is less divergent then we might have expected
it to be from simple SDOD arguments. We are therefore just left with

−iΠµν = e2µε
∫

dDk

(2π)D
8x(1− x)(pµpν − p2ηµν)[
k2 −

(
m2 − x(1− x)p2

)]2
=

i8e2µε

(4π)2−ε (p
µpν − p2ηµν)

Γ(−ε)
Γ(2)

∫ 1

0
dxx(1− x)

[
m2 − x(1− x)p2

]−ε
=
i8α

4π
(pµpν − p2ηµν)

(
1

ε
− γE

)∫ 1

0
dxx(1− x)

[
1− ε log

(
m2 − x(1− x)p2

4πµ2

)]
,

where again we have expressed the last line in terms of α. We can then evaluate the non-log
integral and use our usual claim that the log integral is finite and obtain

Πµν(p) = − α

3π
(pµpν − p2ηµν)

1

ε
+ finite. (3.21)

18Here we will relabel the k′ to k after the substitution. This is just to lighten the notation a bit.
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Exercise

Show that
pµΠµν(p) = 0 = pνΠµν(p) (3.22)

for the pole part.

The result of this exercise is of direct physical importance: it tells us that our Ward
identity, Equation (2.18), is preserved, and so our renormalised photons also do not have a
physical longitudinal polarisation. This translates into the condition that the renormalised
photons are still massless, which is a result we really like. We might worry about the finite
part in Equation (3.21), but as we have explained above, and as we will demonstrate soon,
these factors are just set by our renormalisation conditions (i.e. comparison to experimental
data). In fact for QED there is a useful renormalisation condition prescription, known as
on-shell renormalisation, which tells us to fix these finite terms so that our on-shell particles
remain on shell. We shall see this more explicitly soon.

3.3.3 Vertex Correction

Now we just need to find the one loop corrections to the vertex. Here we label the 1PIs by
−ieΛµ(p1, p2), where p1 and p2 are the momentum of the Fermions, and µ is the index on the
photon line. At leading order we just have the diagram we have drawn a few times:

p1

p1 + k

p2

p2 − k

µ

p1 + p2

k

ρ

ν

This corresponds to the expression

−ieΛµ(p1, p2) = (−ie)3

∫
dDk

(2π)D
γρi(−/p1

− /k +m)γµi(/p2
− /k +m)γν(−igρν)

k2
[
(−p1 − k)2 −m2

][
(p2 − k)2 −m2

]
= −e3

∫
dDk

(2π)D
γν(−/p1

− /k +m)γµi(/p2
− /k +m)γν)

k2
[
(p1 + k)2 −m2

][
(p2 − k)2 −m2

] .
Now we employ our usual tricks in the following steps19

Λµ(p1, p2)

= −ie2 Γ(3)

Γ(2)

∫ 1

0
dx

∫ 1−x

0
dy

∫
dDk

(2π)D
γν
[
/k + (1− x)/p1

+ y/p2
−m

]
γµ
[
/k − x/p1

− (1− y)/p2
−m

]
γν[

k2 −m(x, y)
]3

19Again I have relabelled the k′ = k + xp by k after the substitution to save notational mess.
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where
m(x, y) := −x(1− x)p2

1 − y(1− y)p2
2 +m2(x+ y)− 2xyp1p2.

Now we will get a bunch of terms in the expansion of the numerator that fall into three types

(i) ∼ /k/k,

(ii) ∼ /k, and

(iii) ∼ 1 (i.e. no k terms).

The first of these is divergent, the second vanishes by the fact that it is an odd integral, and
the last is some finite result (as D > 3). So the problem reduces to just considering

Λµ(p1, p2) = −2ie2

∫ 1

0
dx

∫ 1−x

0
dy

∫
dDk

(2π)D
γν/kγµ/kγν[

k2 −m(x, y)
]3

= − ie
2

2
(D − 2)2Γ(−ε) i

(4π)2−εγ
µ

∫ 1

0
dx

∫ 1−x

0
dy
[
m(x, y)

]−ε
=
e2

2

(2− 2ε)2

(4π)2−ε

(
1

ε
− γE

)
γµ
∫ 1

0
dx

∫ 1−x

0
dy
[
1 +O(ε)

]
were again we have taken the limit ε→ 0 to expand stuff. We therefore conclude

Λµ(p1, p2) =
α

4π

1

ε
γµ + finite. (3.23)

3.3.4 A Taste Of Higher Order Corrections

As we have tried to stress, the above results, Equations (3.20), (3.21) and (3.23), have all
be calculated at one loop, i.e. to leading order in α. However Σ, Πµν and Λµ are meant to
contain all 1PI diagrams not just the leading order ones, so we might be a bit sceptical about
how useful these results are. However what we now notice is that each of these expressions
are essentially of the same form as the original terms. By this we mean that

Σ ∼ /p−m

and so the form of S−1
f , Equation (3.19), doesn’t really change. This result stems from the fact

that our correction terms in the Lagrangian take the same form of a Fermion kinetic terms
in the original Lagrangian. Similarly Πµν looks like the numerator of the photon propagator,
and Λµ looks like a coupling term (it has a γµ form), and so our correction terms take the
photon kinetic term and a Yakawa interaction. For example consider the next leading order
diagram for the photon propagator:

k2 k1

x w

z

y



CHAPTER 3. QED AT ONE LOOP 48

Where the labels w, x, y, z are position space labels. It is not clear at all that we expect to
get divergences of the familiar form, i.e. 1/ε poles, from diagrams like this, so what do we
do? Well our divergences occur at high momentum, so let’s look at the limit k2 → ∞ but
k1 remains finite. Recall that high energy means small distance, so in this limit the position
space points y and z move closer to the x point then the w point. So we can think of this
diagram as looking like

x w

z

y

This now looks like we have a vertex factor Λµ on the left-hand side with the right-hand side
being treated separately. In other words, it looks like we have a Λµ factor embedded into our
one loop correction to the photon propagator. This is exactly how we treat it, and the reason
we can do this is because the Λµ term will give the same form as the ‘normal’ vertex. That
is, we essentially redo the derivation of Πµν but now from the diagram

This has only taken care of the limit where k2 → ∞, of course we can repeat the entire
argument but now with k1 →∞, which gives the diagram

The claim is that these two terms will cancel the two divergences arising from the separate
limits k1 →∞ and k2 →∞. This is great but we then have the immediate question of "what
if we take both k1 →∞ and k2 →∞?" Well we can expect this to give us a α2/ε2 divergence.
We will have to introduce a new counter term, at order α2 to remove this divergence, that is
include some new Feynman diagram looking like

in order to cancel this remaining α2/ε2 pole. This corresponds to adding a α2 term to Πµν .
The next claim is that because we have removed all other structures before hand, this new
term is also proportional to the photon propagator term and so does not introduce new terms
into Lagrangian, which would need to be fixed by further experimental data.

This argument then essentially extends by induction to the claim that we can reduce all
higher order corrections down to known loop corrections and the addition of higher order α
terms in our Σ/Πµν/Λµ.

Essentially what the above is saying is that all we have to do to account for the higher order
loop corrections is to tweak our definitions of Σ/Πµν/Λµ, and then use the same measurements
to fix our finite terms. We therefore do not need a new symbol for the higher order correction,
i.e. we can use ⊗ instead of ⊕, as it is the same counter term. This is a really important
point as it is this condition that separates renormalisable theories from non-renormalisable
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ones, so we stress it again: the important thing to note is that we are not introducing a whole
new set terms which come with their own finite contributions. These new finite terms would
then need fixing by new experimental observation, and thus further reducing our predictive
power; i.e. our reference point becomes more and more constrained. If we need to introduce
a new counter term at a higher order the idea is that we will have to keep doing this at every
higher order, and so in the full perturbative expansion (i.e. all orders), we need an infinite
number of experimental measurements, and so our reference point is fully constrained. This
renders our theory useless as it has no predictive power left.

Remark 3.3.4 . Note, as we have mentioned before, even in a non-renormalisable theory, we
can retain some predictive power to some fixed order in the perturbation series, albeit with
heavy constraints. It is only when we want to consider the full series that our theory is
completely useless.

3.3.5 Example Of What A Non-Renormalisable Term Would Look Like

The above explanation of the corrections "looking like" the original terms telling us that the
theory is renormalisable might be confusing. Let’s, therefore, give an example of what a
non-renormalisable term would look like20 so that we can contrast it.

Consider the box diagram

p1 + p1 + k

p2 + k p4 + k

k

Now let’s assume that we had a massive photon with mass mγ . We claim, without proof, that
the propagator would then become

−i
k2 −m2

(
ηµν − kµkν

m2
γ

)
.

Then the above diagram would give a contribution (in the high k limit) of the form

∫
d4k

(2π)4

(/k +mψ)(−/k +mψ)(ηµµ
′ − kµkµ

′

m2
γ

)(ηνν
′ − kνkν

′

m2
γ

)

(k2 −mψ)2(k2 −m2
γ)2

,

where we note the minus sign from the antifermion at the bottom of the loop. This term
contains two divergences: a quadratic one that comes from including all the k terms in the
numerator and a logarithmic one that comes from keeping 6 of the k powers in the numerator.

We can actually remove the quadratic divergence by also considering the following diagram
20This example is based off a calculation given at the end of lecture 1 and start of lecture 2 of Dr. Sean

Tulin’s Standard Model Review 2018/19 course at Perimeter.

http://pirsa.org/displayFlash.php?id=19010047&__hstc=261081490.841b89fe02c785864e161b49c1c05cca.1577099922882.1577099922882.1577214190881.2&__hssc=261081490.6.1577214190881&__hsfp=2145983341
http://pirsa.org/displayFlash.php?id=19010048&__hstc=261081490.841b89fe02c785864e161b49c1c05cca.1577099922882.1577099922882.1577214190881.2&__hssc=261081490.6.1577214190881&__hsfp=2145983341
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where now the momentum flow on the bottom has now turned the antifermion to a Fermion,
and so we don’t get the minus sign above.

Therefore any term which includes the /k from this Fermion will cancel between the two
diagrams. This cancels the quadratic divergence and part of the logarithmic divergence, but
it does not cancel the logarithmic divergence that comes from the∫

d4k

(2π)4

m2
ψk

µkµ
′
kνkν

′

k8
∼ log Λ,

where Λ is the cut off momentum. We would therefore need to introduce a 4-point counter
term into our Lagrangian, i.e. a counter term of the form

λψψψψ,

which corresponds to the diagram

However no such term was present in the original Lagrangian and so we cannot just absorb
this counter term into our original parameters.

Remark 3.3.5 . Note that for the actual case of QED the propagator is

−i
k2

(
ηµν − (ξ − 1)

kµkν

k2

)
,

and so these extra factors of k remove this logarithmic divergence. Another nice way to see
that this must be the case for QED is the fact that if we work in Feynman gauge, ξ = 1, this
additional term vanishes and so we never have to worry about any divergences. If we can do
this in one gauge it must hold in all gauges (otherwise we don’t have a gauge symmetry), so
it follows that the box diagram is convergent for QED.

Remark 3.3.6 . Note that for first box diagram the linear divergence (i.e. 5 powers of k in the
numerator) vanished because of the relative sign between the two /ks. However for the second
box diagram this linear divergence appears as well as the logarithmic one. The latter is more
violent which is why we focused on it.

3.4 Renormalisation Of QED

Ok so now that we have the one loop corrections to our propagators and vertex we can use
these results to fix the renormalisation factors, i.e. the Zs.
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3.4.1 The Fermion Propagator

Let’s start with the Fermion propagator. This stems from the ψ(i/∂ + m)ψ term in the
Lagrangian. So recalling Equation (3.17) this result will tell us about the values of Z2 and
Zm. How do we find them, well the original (i.e. bare) propagator took the form

(S−1
f )B = /p−mB

which will translate to
(S−1
f )R = Z−1

2 /p− Z−1
2 Z−1

m mR

in the renormalised Lagrangian. So we compare this to Equation (3.19) using Equation (3.20):

(S−1
f )R = /p−mB − Σ(p)

= /p−mB −
α

4π

1

ε

(
− /p+ 4mB) + finite

=

(
1 +

α

4π

1

ε

)
/p−

(
1 +

α

π

1

ε

)
mB + finite,

and so we conclude that, to one loop,

Z−1
2 = 1 +

α

4π

1

ε
+ finite

Z−1
2 Z−1

m = 1 +
α

π

1

ε
+ finite.

We can simply invert the Z2 relation by using(
1 +

α

4π

1

ε

)(
1− α

4π

1

ε

)
= 1 +O(α2),

so, to first order, we have

Z2 = 1− α

4π

1

ε
+ finite. (3.24)

We can then use this to obtain

Z−1
m =

(
1 +

α

π

1

ε
+ finite

)(
1− α

4π

1

ε
+ finite

)
= 1 +

3α

4π

1

ε
+ finite

and so

Zm = 1− 3α

4π

1

ε
+ finite. (3.25)

So we see that we can absorb the divergences arising from the bare propagator into the
Z2 and Zm factors. We still need to fix the "+ finite" terms, which, as we have mentioned a
couple times, we do by using our renormalisation scheme/conditions, i.e. basically comparing
to experimental data.
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Remark 3.4.1 . For further clarity on what we said in the higher order correction section, the
idea is that at higher orders the only thing that changes is that we get α2/ε2 terms in our Z
expansions. This is because the new correction, the ‘circled plus diagram’, also gives a term
which is proportional to the photon propagator, so our Σ(p) still takes the form A/p + Bm
and so we can absorb both the 1/ε and 1/ε2 poles into Z2 and Zm.

This would not be the case if we had got a pole with some funky function of p appearing
in Σ(p), as the Z2 term just goes with /p. We would therefore have to introduce a new Zfunky
to account for this pole. This Zfunky would then have its own "+ finite" term which we would
also have to fix. We then see the out of control spiral we get at each progressive order if this
is the case, and we end up needing an infinite number of experimental measurements to fix
all our counter terms.

3.4.2 Renormalisation Schemes

Ok so what do we do about these finite terms? Well we note that Equation (3.20) essentially
says

Σ(p) ∼ Z2/p+ Zmm+ finite.

We then also recall that the Zs essentially just relate the bare parameters to the renormalised
ones, and so we are free to add finite terms to both sides of the expression while maintaining
this relation. This essentially boils down to saying we can absorb some of the "+ finite" terms
from the Σ(p) relation into the Zs, while at the same time adding finite terms to the bare
parameters. The latter are unmeasurable and so it makes no difference if we add these finite
terms.

The idea of renormalisation schemes, then, is the trade off between what part of our finite
term appears in the Zs and what part if left in the Σ(p) relation.

Minimal Subtraction (MS)

Perhaps the most ‘obvious’ subtraction scheme is to simply subtract away everything, so that
Σ(p) ∼ Z2/p + Zmm with no finite terms. This is known as minimal subtraction (MS). At
first site this might seem like a nice result, however we then remember that our Zs appear
everywhere and so we now have to carry around these full finite terms as we go. This motivates
the next scheme.

Modified Minimal Subtraction (MS)

In modified minimal subtraction we again do our subtraction so that the right-hand side takes
a simple form, however here we do not remove the complete finite term. Instead we note that
a factor of log(4πe−γE ) has appeared in every finite term so far. This term comes from the
expansion of Γ(−ε). We therefore include just this term in our Zs, so that,

Z2 = 1− α

4π

[
1

ε
+ log

(
4πe−γE

)]
Zm = 1− 3α

4π

[
1

ε
+ log

(
4πe−γE

)]
.
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If we do this, then we see, recalling the expression just before Equation (3.20), that in the
MS scheme the remaining finite term is just21

finite =
α

4π
2

∫ 1

0
dx
[
(1− x)/p− 2m

]
log

(
xm2 − x(1− x)p2

µ2

)
.

The problem with schemes like this is that they give unpleasant results. To see why, let’s
consider what happens to the pole and residue of our propagators. We have

1

/p−mB − Σ(p)
=

Z−1
2

/p− ZmmR − Σ(p)

=
1 + α

4π
1
ε

/p−
(

1− 3α
4π

1
ε

)
mR − α

4π
1
ε (−/p− 4mR)− finite

1 + α
4π

1
ε(

1 + α
4π

1
ε

)
/p−

(
1 + α

4π
1
ε

)
mR − finite

=
1

/p−mR − finite
.

Now in MS the finite terms contain an m, and so the pole is shifted. On top of this, they
also contain µ2 in the log term. Why is this a problem? Well we recall that µ ∼ p, and so the
value of our pole and residue is energy scale dependent. Putting this together with the fact
that the pole of a propagator is meant to give us the mass of the thing, we conclude

mMS
R = mMS

R (µ2). (3.26)

This seems like a bit of an unpleasant result, and so we can also use a different renormalisation
scheme.

On-Shell Renormalisation

The idea of on-shell renormalisation is to demand that the pole of the propagator is not
shifted. To do this we define

Σ(p) = Σ(p)− Σct(p), (3.27)

where Σct(p) are the counter term parts of Σ(p). That is Σ(p) contains just the finite parts.
Our propagator correction is then

S−1
f (p) = /p−mR − Σ(p).

We can now demand that the pole of the Fermion corresponds to the physical mass by
requiring22 [

/p−mR − Σ(p)
]∣∣∣
/p=mR

!
= 0.

21I suppose really we should call this fĩnite or something because it’s not the same finite term. The idea is
clear, though, so we won’t be so picky.

22The condition /p = mR here is meant to be understood as "the result of /p acting on the Fermion gives the
same result as mR acting on it".
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This obviously gives us one condition on Σ(p), however we also need to make sure that the
residue of the pole is not shifted. We achieve this by employing a condition on the /p-derivative
of Σ(p),23 so in total we have:

Σ(p)
∣∣
/p=mR

= 0, and
dΣ

d/p

∣∣∣∣
/p=mR

= 0 (3.28)

From here we get the conditions for Z2 and Zm as

Z2 − 1 =
dΣ

d/p

∣∣∣∣
/p=mR

, and Z2Zm − 1 = − dΣ

dm

∣∣∣∣
/p=mR

where we note that this is the unbarred Σ.

Remark 3.4.2 . There is an important side effect of this renormalisation scheme: external legs
with loops are proportional to Σ(/p = mR) and so they vanish. Note this is not the same as
saying we only consider amputated diagrams, as these terms actually vanish. This is more
powerful then amputated diagrams, as these terms do not contribute to anything in the theory
at all, whereas it is only the S-matrix that amputated diagrams don’t contribute to.

Remark 3.4.3 . Note that the on-shell scheme works in the opposite direction to the subtraction
schemes. That is, for the subtraction schemes we first defined the Zs and then used those to
find the finite terms in Σ(p), whereas in the on-shell scheme we fix the finite terms in Σ(p)
and use that to determine the Zs.

Remark 3.4.4 . It would be a fair question to ask "why even bother considering MS or MS?
Why not always use on-shell renormalisation?" Well the answer is that on-shell renormalisa-
tion isn’t always well defined. The main example being QCD, where confinement tells us that
we cannot measure the mass of a single quark.

3.4.3 The Photon Propagator

Just as we denoted the Fermion propagator with a Sf (p), we denote the photon propagator
by Dµν(ξ). The zeroth order (i.e. no loops, just the plain propagator) term is

D0
µν(ξB) =

−i
p2

(
ηµν +

(
ξB − 1

)pµpν
p2

)
,

where ξB is our bare gauge parameter. The one loop correction is given by

D1
µν(ξB) = D0

µν(ξB) +D0
µρ(ξB)

(
− iΠρσ

)
D0
σν(ξB).

Diagrammatically this corresponds to

µ ν + µ ρ νσ

23See QFT II questions for why this is the case.
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Now we recall the result for Πµν , Equation (3.21):

Πµν(p) = − α

3π
(pµpν − p2ηµν)

1

ε
+ finite

= − α

3π
p2

(
pµpν

p2
− ηµν

)
1

ε
+ finite

along with the Ward identity result Equation (3.22):

pµΠµν(p) = 0 = ∂νΠµν(p),

which tells us that the pµpνΠµν term vanishes, giving us

D1
µν(ξB) = − i

p2

(
ηµν +

(
ξB − 1

)pµpν
p2

)
+
−i
p2
ηµρ(−i)

[
− α

3π
p2

(
pρpσ

p2
− ηρσ

)
1

ε

]
−i
p2
ησν + finite

=
−i
p2

[
ηµν + (ξB − 1)

pµpν
p2
− α

3π

(
ηµν −

pµpν
p2

)
1

ε

]
+ finite

=
−i
p2

[
ηµν

(
1− α

3π

1

ε

)
− pµpν

p2

(
1− α

3π

1

ε

)
+ ξB

pµpν
p2

]
+ finite

=
−i
p2

(
1− α

3π

1

ε

)[
ηµν −

pµpν
p2

+ ξB

(
1 +

α

3π

1

ε

)
pµpν
p2

]
+ finite

where the last line follows because we are only working to order α (so the α2 term that comes
from the factorisation is dropped). If we compare this to our desired renormalised result24

D1
µν(ξB) = Z3D

1
µν,R(ξR)

along with ξB = ZξξR, we simply read off

Zξ = 1 +
α

3π

1

ε
+ finite, and Z3 = 1− α

3π

1

ε
+ finite. (3.29)

Remark 3.4.5 . Note that the renormalised photon propagator still has its pole at p2 = 0, as
this is where the denominators blow up. This is an important result because it tells us that
the renormalised photon is still massless.

On-Shell Renormalisation

Let’s now fix the finite terms using on-shell renormalisation. First we introduce the non-
indexed Π(p2) via

iΠµν(p2) =
(
p2ηµν − pµpν

)
Π(p2).

Our renormalised photon propagator then takes the form (in Feynman gauge)

Dµν,R(p2) =
−iηµν

p2
[
Z3 −Π(p2)

]
24Note the appearance of Z3, this is here because the photon propagator comes from terms containing Aµs,

which renormalise with Z3; see Equation (3.17).
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so if we are to keep our residue fixed we have to impose

Z3 − 1 = Π(p2)
∣∣
p2=0

.

This is just the definition of our counter-term, see Equation (3.18). That is

Π(p2) := Π(p2)−Πct(p
2)

= Π(p2)−Π(p2)
∣∣
p2=0

.

It follows from this that our renoramlised photon propagator is

Dµν,R(p2) =
−igµν

p2
[
1−Π(p2)

] ,
and so our on-shell renormalisation condition is simply

Π(p2)
∣∣
p2=0

= 0. (3.30)

3.4.4 Vertex Correction

Just as we introduced the symbol Dµν for the photon propagator, we introduce the symbol
Γµ for the vertex terms. The tree level term is simply

−ieBψBΓ0
µψBA

µ
B = −ieBψBγµψBA

µ
B,

and to one loop, we have

−ieBψBΓ1
µψBA

µ
B = −ieBψBγµψBA

µ
B −−ieBψBΛµ(p1, p2)ψBA

µ
B.

So inserting Equation (3.23), we have

ψBΓ1
µψBA

µ
B = −ieBψBγµ

(
1 +

α

4π

1

ε
+ finite

)
ψBA

µ
B

which, comparing to Equations (3.17) and (3.18), allows us to read off

Z−1
1 = 1 +

α

4π

1

ε
+ finite

which we can invert to give

Z1 = 1− α

4π

1

ε
+ finite (3.31)

We now notice a very nice, and physically pleasing, result: recalling Equation (3.24), we
see that

Z1 = Z2. (3.32)
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We have only shown this to first order in α, but it turns out that Equation (3.32) holds to all
orders. This can be shown using the Ward identities, but a proof is not given here.25 Why is
this result physically pleasing? Well we recall that

eB =
Z1

Z2Z
1/2
3

eR,

so if Equation (3.32) holds then we see that the renormalised coupling constant is related to
the bare coupling constant purely by contributions from the photon corrections,

eR = Z
1/3
3 eB.

In other words, the renormalisation of the electric charge is due only to the vacuum polari-
sation effects of the photon propagator. This gives us the idea you might have seen before
about the electron charge not being a constant at all, but its value being ‘obscured’ by vacuum
polarisations around it. Essentially we have electron-positron pairs creating dipoles around
our bare charge and so screen the value.

eB + −

+
−

+

−

+
−

+−

+
−

+
−

+
−

+ −
+−

+
−

The other important thing to note is that our relation is independent of Fermion dependent
factors, and so it is the same for all different Fermion species. That is, our renormalised
coupling term is the same for all Fermions up to the values of Q for each Fermion. This is
what we had for the bare charges, and it’s what we would want physically, so its a very nice
result indeed.

On-Shell Renormalisation

Similarly to before, we introduce the indexless Λ(p, p′)

Λµ(p, p′) = Λ(p, p′)γµ

and the definition

Λ(p, p′) := Λ(p, p′)− Λct(p, p
′) = Λ(p, p′)− (Z1 − 1).

Here the on-shell condition here corresponds to saying that our vertex factor equals −ieRγµ
when p = p′. This corresponds to saying the loop photon carries no momentum (so is basically
not there), and so the Fermions coming into the vertex are on-shell. Mathematically what
we’re talking about is

−ieRΓµ(p, p′)
∣∣
p=p′

= −ieRγµ,
which translates to the now familiar form

25See Peskin and Schroeder for more details.
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Λ(p, p′)
∣∣
p=p′

= 0. (3.33)

This translates to
Z1 − 1 = −Λ(p, p′)

∣∣
p=p′

.

3.4.5 Running Coupling

Remark 3.4.6 . To be honest, I am confused why we don’t consider the µ dependence of the α
inside the brackets or in the finite terms in what follows. I’ve already spent quite a bit of time
trying to understand it, and I need to get on with finishing the course, so I’m just accepting
its true here and moving on. If you know why please let me know!

We have seen that eR = Z
1/2
3 eB, and that Z3 contains a α term. This α term itself has µ

dependence by its definition, and so recalling again that µ ∼ p we see that our renormalised
coupling has momentum dependence. First let’s find this dependence and we’ll explain what
is going on physically. We have

αR := µ−2εαR

= µ−2εαB

(
1− α

3π

1

ε
+ finite

)
,

so taking the derivative w.r.t. µ, we have26

µ
dαR
dµ

= −2εµ−2εαB

(
1− αB

3π

1

ε
+ finite

)
=

2

3π

(
αBµ

−2ε
)2

+O(ε)

=
2

3π
α2
B +O(ε)

=
2

3π
α2
R +O(α3

R) +O(ε)

=⇒ dαR
dµ

1

α2
R

=
1

µ

2

3π
,

which we can integrate relative to some reference scale µ0. The result is

αR(µ) =
α(µ0)

1− 2
3πα(µ0) log(µ/µ0)

. (3.34)

So as we increase our momentum µ our renormalised coupling gets bigger. This actually
makes, let’s see why. Physically to measure the coupling we would probe it, say using a
photon. As we saw above, the actual charge is ‘shielded’ by the effective dipoles that form
from the e+e− production around it. However if we increase the energy of the photon, i.e.

26Note we have multiplied by µ so that the powers on the right-hand side don’t change
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increase µ, we can penetrate deeper into this shielded region and get a more accurate result.
The other way to think about it is that high energies correspond to small distances and so
the resolution capacity of our incoming photon increases, which allows it to differentiate the
bare charge from the dipoles better.

Now we note that when
2

3π
α(µ0) log(µ/µ0) = 1

our coupling blows us. This is known as a Landau pole, and it says that the coupling constant
gets arbitrary large at high energy scales. This might seem like a huge problem, both physically
and because we’re meant to be considering perturbation theory so we need αR to be small.
However if we use the experimentally measured approximate value of

α(µ0) ∼ 1

128

we see that the Landau pole occurs at

µ ∼ 10262.

This is an absurdly high number and we expect our QED theory to break down long before
that anyway. Therefore Equation (3.34) is really more of an intriguing theoretical result than
anything else.

3.5 Example Of One-Loop Calculation

Let’s have a look at an actual calculation using our renormalisaion at one-loop. We will
consider the simple process of an electron scattering off some heavy source, which we denote
A. We take the source to be heavy so that it doesn’t recoil significantly because of the
interaction, this tells us that we cannot have both the electrons being on-shell. We therefore
treat them as internal propagators in what follows. So we’re looking at the following diagram

e− p1 e−p2

A

which gives us the mathematical expression of the form

i(/p2
+mB)

p2
2 −m2

B

eBγ
µ
i(/p1

+mB)

p1
2 −m2

B

=
i

/p2
−mB

eBγ
µ i

/p1
−mB

,

where the equality follows from

i(/p+m)

p2 −m2
=

i(/p+m)

(/p−m)(/p+m)
, and /p/p = p2.
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Remark 3.5.1 . Note we have only considered part of the expression here, e.g. we haven’t
included the photon propagator term. As will be clear going froward, the part that we have
written contains all the correction terms and so there’s no need to carry around all the other
terms too.

There are four one-loop terms, let’s look at them in turn. We will work in MS just so we
don’t have to keep writing + finite.

(i) First we have a loop on the outgoing external leg

A

which corresponds to
i

/p2
−mB

(
− iΣ(p2)

) i

/p2
−mB

eBγ
µ i

/p1
−mB

=
i

/p2
−mB

αB
4π

1

ε

−/p2
+ 4mB

/p2
−mB

eBγ
µ i

/p1
−mB

= − 1

/p2
−mB

[
− αB

4π

1

ε
eBγ

µ +
αB
4π

1

ε

3mB

/p2
−mB

eBγ
µ

]
1

/p1
−mB

(ii) Next we have the same thing but with the loop on the incoming leg:

A

the result of which follows trivially from the previous calculation:

− 1

/p2
−mB

[
− αB

4π

1

ε
eBγ

µ +
αB
4π

1

ε

3mB

/p1
−mB

eBγ
µ

]
1

/p1
−mB

(iii) We also have the vertex correction:

A
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which gives us

i

/p2
−mB

Λµ
i

/p1
−mB

= − 1

/p2
−mB

αB
4π

1

ε
eBγ

µ 1

/p1
−mB

.

(iv) Finally we have the photon correction

A

which gives the contribution of the form

i

/p2
−mB

eBγ
ν i

/p1
−mB

−iηνσ
(p1 − p2)2

(
− iΠσµ(p1 − p2)

)
=

1

/p2
−mB

eBγσ
1

/p1
−mB

1

(p1 − p2)2

(
− α

3π

1

ε

)[
(p1 − p2)σ(p1 − p2)µ − (p1 − p2)2ησµ

]
.

Now we use the fact that Πσµ is transverse to drop the first term in the square brackets.27

So we are just left with

1

/p2
−mB

eBγ
µ 1

/p1
−mB

(
− α

3π

1

ε

)
.

Putting these all together, we get the 2-point Green’s function:

〈0| T [ψBA
µ
BψB] |0〉 =

eB

/p2
−mB

[
1− αB

4π

1

ε
− αB

3π

1

ε
+
αB
4π

1

ε

(
3mB

/p1
−mB

+
3mB

/p1
−mB

)]
γµ

1

/p1
−mB

.

Now let’s consider the renormalised quantities. Firstly we have

1

/p2
−mB

=
1

/p2
−mR

(
1− 3αB

4π
1
ε

)
=

1

/p2
−mR

− 3αBmR

4π(/p2
−mR)2

1

ε
+O(α2),

where the second line follows from

(a+ b)−1 =
1

a
− b

a2
+O(b2) b < a.

27Dr. Schoenherr says the (p1 − p2)µ term contracts with a polarisation so the Ward identity makes it
vanish. To be honest I don’t see where this polarisation is coming from as the final photon, i.e. the one that
meets A is internal and so won’t come with a εµ. As with the above, I am a bit too busy to spend all day
trying to work this out, so just going to continue accepting it.
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Now we note that mR = mB +O(α), so we can replace

mRαB
(/p2
−mR)2

=
mBαB

(/p2
−mB)2

+O(α2),

to give us
1

/p2
−mB

=
1

/p2
−mR

− 3αBmB

4π(/p2
−mB)2

1

ε
+O(α2).

This is the correction term corresponding to (i) above, and as we see it will exactly cancel the
divergent term coming from there. Similarly (ii) will be cancelled by

1

/p1
−mB

=
1

/p1
−mR

− 3αBmB

4π(/p1
−mB)2

1

ε
+O(α2).

So our 2-point function is reduced to

〈0| T [ψBA
µ
BψB] |0〉 =

eB

/p2
−mR

[
1− αB

4π

1

ε
− αB

3π

1

ε

]
γµ

1

/p1
−mR

+O(α2).

We now use the renormalised fields, i.e.

〈0| T [ψRA
µ
RψR] |0〉 = Z−1

2 Z
−1/2
3 〈0| T [ψBA

µ
BψB] |0〉

with

Z−1
2 Z

−1/2
3 =

(
1− αB

4π

1

ε

)−1(
1− αB

3π

1

ε

)−1/2

+O(α2)

=

(
1 +

αB
4π

1

ε

)(
1 +

αB
6π

1

ε

)
+O(α2)

= 1 +
αB
4π

1

ε
+
αB
6π

1

ε
+O(α2),

where the second line follows using

(1 + x)−n = 1− x

n
+O(x2).

We therefore have

〈0| T [ψRA
µ
RψR] |0〉 =

eB

/p2
−mR

[
1− αB

6π

1

ε

]
γµ

1

/p1
−mR

+O(α2).

Finally we use the renormalised coupling

eB = Z
−1/2
3 eR =

(
1 +

αB
6π

1

ε

)
eR +O(α2),

so in total we have
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〈0| T [ψRA
µ
RψR] |0〉 =

1

/p2
−mR

eRγ
µ 1

/p1
−mR

,

which is exactly the result we want!

3.6 Infrared Divergences

We have just spent 30 pages discussing UV divergences, but remember that these were not
the only kind; we also have IR divergences which correspond to the photon going soft, i.e.
kµ → 0. How do we deal with these? Luckily we have done a lot of the work we need, and so
we don’t need another 30 pages. Let’s look at tackling these IR divergences now.

What we’re going to consider here is the real emission28 of a soft photon, i.e. a diagram
of the form

p+ k p

k

where we take the photon and out going electron to be on-shell but we do not take the
incoming electron to be on shell. That is we have29

p2 = m2, k2 = 0, but (p+ k)2 6= m2.

This diagram gives corresponds to the expression

...
/p+ /k +m

(p+ k)2 −m2
γµu(p) = ...

/p+ /k +m

p2 + 2p · k + k2 −m2
γµu(p) = ...

/p+ /k +m

2p · k
γµu(p),

where we have used on on shell conditions in the last equality. If we now take the soft photon
limit kµ → 0 the /k term vanishes and we are left with

/p+m

2p · k
γµu(p) =

2pµ

2p · k
+ γµ

−/p+m

2p · k
u(p),

where we have used the Clifford algebra relation {γµ, γν} = 2ηµν . Now we note that the
second term is proportional to

(/p−m)u(p),

which is just the Dirac equation acting on an external field, and so it vanishes.30

So our problem is reduced to studying

pµ

p · k
u(p).

28The case of a virtual photon is treated in quite some detail in the exercises for the course. I will not
present any of that here because its not a trivial calculation, and I don’t want to type the answer as it was an
exercise on the course.

29Obviously the ... here is meant to be the rest of the diagram.
30If this result isn’t familiar, see, e.g., equation 11.3 of my IFT notes.
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Now obviously in the kµ → 0 this expression diverges with 1/ε type behaviour. We also have
another 1/ε divergence, which we see by picking a frame:

pµ = (E, 0, 0, pz), and kµ = (Eγ , Eγ sin θ, 0, Eγ cos θ)

to obtain
p · k = Eγ(E − pz cos θ).

In the massless limit we have E = pz and so

p · k = EγE(1− cos θ)

which gives a 1/ε divergence for θ → 0.
We therefore see that the so-called soft-colinear limit will give us a 1/ε2 divergence be-

haviour, and so we want to find a counter term that contains both 1/ε and 1/ε2 poles. Let’s
consider the vertex correction

p1

p1 + k

p2

p2 − k

µ

p1 + p2

k

ν

ρ

in the soft-colinear limit, that is we take both kµ → 0 and massless limit p2
1 = p2

2 = 0 (with
θ → 0).

As we said when first discussing the different renormalisation schemes, we can also use
dimensional reduction to deal with the IR divergences, and that’s what we do here. This
diagram then corresponds to

Λµ(p1, p2) = −2ie2

∫
dDk

(2π)D

∫ 1

0
dx

∫ 1−x

0
dy
γν
(
/k + (1− x)/p1

+ y/p2

)
γµ
(
/k − x/p1

− (1− y)/p2

)
γν[

k2 − (−2xyp1 · p2)
]3 ,

where we have obviously used our Feynman parameter relation. The first thing we notice is
that this expression will appear as

v(p1)Λµ(p1, p2)u(p2) (3.35)

for the incoming states, so so we can use the massless Dirac equations

/p2
u(p2) = 0 = v(p1)/p1

so we can drop any terms that appear in this form.
We then consider the other other terms in groups.



CHAPTER 3. QED AT ONE LOOP 65

(i) First let’s consider the term containing γν/kγµ/kγν . We have actually already considered
this term leading up to Equation (3.23), the only difference being the form of m(x, y).
Here we have m(x, y) = −2xyp1 · p2, whereas before it also had terms with p2

1, p
2
2 and

m2, all of which we’ve set to zero. So we can just quote the result as

Λµ(p1, p2)
∣∣∣
k2

=
α

4π

1

ε
γµ + finite.

(ii) The terms that go as /k with a /p1,2
will vanish by symmetry (same as before).

(iii) Now consider the rest of the numerator,

Λµ(p1, p2)
∣∣∣
k0

= −2ie2

∫ 1

0
dx

∫ 1−x

0
dy

∫
dDk

(2π)D
γν
(
(1− x)/p1

+ y/p2

)
γµ
(
− x/p1

− (1− y)/p2

)
γν[

k2 −m(x, y)
]3 .

The numerator contains a product of five γs, and so we use our trace relation

γνγσγµγργν = (4−D)γσγµγρ − 2γργµγσ.

We then see the terms that contain two /p1
s or /p2

s will vanish via our Dirac equations
and Equation (3.35). So we just have to consider the terms

γν/p1
γµ/p2

γν = (4−D)/p1
γµ/p2

− 2/p2
γµ/p1

→ −2/p2
γµ/p1

γν/p2
γµ/p1

γν = (4−D)/p2
γµ/p1

− 2/p1
γµ/p2

→ (4−D)/p2
γµ/p1

,

where the → bits drop the Dirac equation terms. We can do a bit more, actually, by
using {γµ, /p1

} = 2pµ1 − /p1
γν

/p2
γµ/p1

= /p2

(
2pµ1 − /p1

γµ
)
,

and then again we drop the first term as it lets the /p2
act on our u(p2). Finally we use

−/p2/p1
= −2p2 · p1 + /p1/p2

,

which also follows from the Clifford algebra anticommutation relation, and we again
drop the final term. We are therefore just left with

Λµ(p1, p2)
∣∣∣
k0

= −2ie2

∫ 1

0
dx

∫ 1−x

0
dy

∫
dDk

(2π)D
γµ(−2p2 · p1)

[
2(1− x)(1− y)− xy(4−D)

][
k2 −m(x, y)

]3
= −2ie2γµ(−2p2 · p1)

−i
(4π)D/2

Γ(3−D/2)

Γ(3)

×
∫ 1

0
dx

∫ 1−x

0
dy
[
2(1− x)(1− y) + xy(D − 4)

][
− 2xyp1 · p2

]−3+D/2
,

where the second line follows from our previous integrals. Now let’s take the limit ε→ 0
(D → 4):

Λµ(p1, p2)
∣∣∣
k0

= −4ie2γµ
(
−2p1·p2

)−ε −i
16π2

Γ(1− ε)
2

∫ 1

0
dx

∫ 1−x

0
dy(1−x)x−1−ε(1−y)y−1−ε.

My algebra differs vastly from Dr. Schoenherr’s and I can’t see how to get it to agree
with the answer. His result gives this containing both a 1/ε2 and 1/ε pole. I have spent
quite a bit of time trying to see where I’ve gone wrong but I can’t see it and I need
to revise for other modules too, so I’m just going to skip it for now. This is a note to
remind myself to try fix this.
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3.6.1 How To Deal With IR Divergences

So far all we have done is demonstrate the IR divergences occur, we are yet to explain how
we deal with them. We have seen that they arise in two places, namely the real emission of
a soft photon and the exchange of a virtual soft photon:

In order to show that we get a finite result when considering the combination of these
diagrams, we need to point out a couple things:

(i) We cannot observe the real emission (right diagram) and so we must integrate over its
phase space.

(ii) It is the squared matrix element we care about, and we always work to a set order
in coupling. Therefore when we take the sum of diagrams and then take the squared
matrix element the cross terms between the above two diagrams are not considered (at
O(α2)). This will be more clear in just a moment.

Loop Integral To Phase Space

First let’s derive a relation that will be useful with (i) above in mind. Recall the relation from
complex analysis

Im

[
lim
ε→0

1

x+ iε

]
= −πδ(x).

Now consider our virtual photon exchange (left diagram), the propagator will give a contri-
bution ∫

d4k

(2π)4

i

k2 − iε
where we remember that really we should take the limit ε → 0 (it was just introduced
to go around the poles, remember). We can then use the above relation in the following
manipulation

Im

[ ∫
d4k

(2π)4

1

k2 − iε

]
= −π

∫
d4k

(2π)4
δ(k2)

= −π
∫

d3k

(2π)3

dk0

2π
δ
(
(k0)2 − ~k2

)
= −π

∫
d3~k

(2π)3
· 1

2π

∫
dk0

2k0

[
δ
(
k0 − |~k|

)
+ δ
(
k0 + |~k|

)]
= −π

∫
d3~k

(2π)3
· 1

2π

∫
dk0

2k0
2δ
(
k0 − |~k|

)
= −

∫
d3~k

(2π)3

1

2|~k|
,

(3.36)
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where we have used the relation

δ(x2 − x2
0) =

1

2|x|
[
δ(x− x0) + δ(x+ x0)

]
and then used the change of variables k0 → −k0 to get to the penultimate line.

So why have we done this? Well it relates the loop integral over the virtual photon
propagator to the phase space integral over the real emission. Note the minus sign, though,
this will be important shortly.

The Cancellation

Ok let’s actually show the cancellation now. We’re looking at calculating

|iM|2 = |iM0 + iMloop + iMγ-emission|2

= |iM0|2︸ ︷︷ ︸
e2

+ 2 Re
(
MloopM∗0

)
+ |iMγ-emission|2︸ ︷︷ ︸

e4

where the subscripts mean the tree level, loop and real photon emission. Note we haven’t
considered theMloop andMγ-emission cross term as per (ii) above.

To proceed we obviously need find the contributions from each diagram:

(a) The tree level diagram

∼ −ieu(p2)γ
µu(p1)

(b) The loop diagram

Gives the contribution31∫
d4k

(2π)4
u(p2)γν

i(/p2
+ /k)

(p2 + k)2
γµ
i(/p1

+ /k)

(p1 + k)2
γρ
−iηνρ
k2

u(p1) =

∫
d4k

(2π)4
iu(p2)

2pν2
2p2 · k

γµ
2(p1)ν
2p1 · k

1

k2
u(p1)

=

∫
d4k

(2π)4
iu(p2)γµu(p1)

p2 · p1

k2(p1 · k)(p2 · k)
,

where we have used the limit k → 0, the massless limit p2 → 0 and the (massless) Dirac
equations /p1

u(p1) = 0 = u(p2)/p2
.

31Hopefully the momentum labels are easy to see, just wanted to try save some Tikzing.
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(c) We then have two real emissions: one on the incoming Fermion and the one of the
outgoing one. These give the results

∼ u(p2)γ
µ ipν1
p1·ku(p1)εν(k)

∼ u(p2)
ipν2
p2·kγ

µu(p1)εν(k)

Exercise

Show the last two results are true. Hint: Use the same tricks that we used to obtain
the loop diagram result.

Now we return to (ii) above: we want to truncate our matrix element squared to some
fixed order in coupling. Now we note if we ‘combine’ the tree level diagram and the loop
diagram we get something of order α2 (i.e. four vertices). Similarly if we ‘combine’ the two
real emission diagrams with get something of order α2. However if we combined the loop
diagram with one of the real emission ones we would get a higher order, so we ignore them.

Remark 3.6.1 . Perhaps a nicer way to make the above argument is that we have seen that
the poles enter at set orders of α, and so if we want to show the α2 pole vanishes we only
want to consider the terms in the squared matrix element that appear at α2.

Let’s look at the contribution from the two real emission lines first. We have the emission
of a real photon and so we need to sum over the polarisations of that as well as the spin sum.
The polarisation sum relation32 is∑

λ

εµλ(p)(ε∗)νλ(p) = −ηµν

Combining this with our usual trick of noticing the trace from the closed Fermion loop we
have

32I forget if this is included above, and I’m currently too lazy to search for it. So for safety we include it
here.
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∑
λ,s,s′

+

2

giving the contribution

e4 Tr
[
/p1
γµ/p2

γµ
′
][
− ηνν′

(
pν1
p1 · k

+
pν
′

2

p2 · k

)]2

= e4 Tr
[
/p1
γµ/p2

γµ
′
] 2p1 · p2

(p1 · k)(p2 · k)
,

where again we have used the fact that we’re considering the massless limit p2
1 = 0 = p2

2. We
finally then include the integral over phase space as per (i) above to give us

|iMγ-emission|2 ∼ e4

∫
d3~k

(2π)3

1

2|~k|
Tr
[
/p1
γµ/p2

γµ
′
] 2p1 · p2

(p1 · k)(p2 · k)
. (3.37)

Exercise

In the above expression we only considered the cross term, i.e. the term

but we didn’t consider the other terms, i.e. both incoming emission or outgoing emis-
sion. Explain why we did this. Hint: Remember we’re looking at the massless limit.

Now let’s look at the term coming from the tree level and loop term. Recall this term
came in the form

2 Re
(
MloopM∗0

)
∼ 2 Re

[(
(−ie)3

∫
d4k

(2π)4
iu(p2)γµu(p1)

p2 · p1

k2(p1 · k)(p2 · k)

)
·
(
− ieu(p2)γµ

′
u(p1)

)∗]

= 2 Re

[
Tr
[
/p1
γµ/p2

γµ
′
]
(−ie)4i

∫
d4k

(2π)4

p2 · p1

k2(p1 · k)(p2 · k)

)]

= e4 Tr
[
/p1
γµ/p2

γµ
′
]

Im

[
d4k

(2π)4

p2 · p1

k2(p1 · k)(p2 · k)

)]

= e4 Tr
[
/p1
γµ/p2

γµ
′
](
−
∫

d3~k

(2π)3

p2 · p1

(p1 · k)(p2 · k)

)
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where we have used Equation (3.36). We now see why the minus sign in that result was
important: it gives us that the sum of the above result and Equation (3.37) exactly cancel,
which is what we wanted.

Physical Interpretation

We conclude these notes with a short explanation of the physical interpretation of the above
result.

We are working in the soft photon limit, k → 0. This is equivalent to the ultra-long
wavelength limit λ → ∞. So in our position space Feynman diagram the virtual photon is
‘stretched’ to infinity as indicated by the first step in the following diagram. Therefore if we
can only see the interaction locally (which is obviously true) it’s like ‘chopping’ the diagram
off at some height as indicated by the second step in the diagram.

k → 0 local

Now the final diagram looks just like the real emission of a photon, which is why they
take the same form in our result above. To be clear, when we ‘stitch it together’ with the tree
level diagram we get something that looks exactly like the ‘stitching’ of the two real photon
emission graphs. This is what are result above said. We don’t, however, have a nice physical
reason for the relative minus sign between the two terms — it comes from the difference in
the integration measures.
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