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1 | Path Integrals & Feynman Kernel

This course is the study of path integrals in quantum mechanics (QM), with a particular
emphasis on concepts related to quantum field theory (QFT). The first obvious questions to
ask are "what are path integrals?" and "why do we care?" The first question will be answered
as we go along, but allow us to answer the second now, providing motivation for the course.

1.1 Why Do We Need Path Integrals?

When we are first taught QM it is almost always taught1 in the language of Schrödinger
wavefunctions and Dirac bra-ket notation. The central equation is the Schrödinger equation

i
d

dt
|ψ〉 = Ĥ |ψ〉 ,

where Ĥ is the operator version of the classical Hamiltonian. As such it is clear that this
approach to QM is based on the Hamiltonian formulation of classical mechanics.

A person who is familiar with classical field theory, will know that there is a completely
different way to study classical mechanics; in terms of the Lagrangian. The path integral
formulation approaches QM from this perspective. That is the Schrödinger equation does not
appear, but instead we study principles of least action and partition functions.

Now the latter generally involves a lot of integral manipulation,2 and so you would be
justified in asking "why on Earth would we put ourselves through all this pain when we could
just use the Hamiltonian approach to QM?" The answer to that question is the name of this
course... QFT. If you are reading these notes I think it’s fair to assume you have had some
introduction to QFT, and it was most definitely done in the language of so-called second
quantisation. This is the Hamiltonian approach to QFT and is obviously a very powerful
tool. However, you will probably have been told about the perils of breaking manifest Lorentz
invariance3 in this approach, and then having to make checks along the way to fix your abuse.
For example, you have to introduce a factor of 1/

√
2E~p in order to get a Lorentz invariant

measure, which then means you need to renormalise your states.
Of course this all works, but it would be nice if we could formulate the study of QFT

in a manifestly Lorentz invariant way. This is where the path integral formulation comes in.
Lagrangians are essentially defined to be manifestly Lorentz invariant, so if we make them

1If you were taught Path integral QM first, fair play.
2Trust me, you’ll agree shortly.
3For clarity, by "manifest" Lorentz invariant we mean you can just look at the equations and say "yup

that’s Lorentz invariant."

1



LECTURE 1. PATH INTEGRALS & FEYNMAN KERNEL 2

our central objects, we’re good to go. I believe this is motivation enough for you to believe
that its at least worth studying. So let’s get to it.

Remark 1.1.1 . It is worth clarifying, it is not that the Hamiltonian doesn’t appear in the path
integral approach, its that we do not make it the central object. It is the Lagrangian that we
are fundamentally interested in.

1.2 What Do We Want To Calculate?

For simplicity, in this course we will just focus on 1-dimensional mechanics, i.e. a particle
with position q(t) and momentum p(t), with standard kinetic energy

mq̇2

2
=

p2

2m
,

and potential V (q). The generalisation to higher dimensions is not hard to see, but involves
carrying around a bunch of sums/dot products, and as we shall see there’s enough symbols
as is so let’s not make things worse. We therefore have a time-independent Hamiltonian

Ĥ =
q̂2

2m
+ V̂ (q̂) (1.1)

and action
S =

∫
dtL(q, q̇), L(q, q̇) =

m

2
q̇2 − V (q). (1.2)

The basic object we will calculate using path integrals is the Feynman kernel

K(qF , tF ; qI , tI) := 〈qF | Û(tF , tI) |qI〉 , (1.3)

where
Û(t, t0) := exp

(
− i

~
Ĥ(t− t0)

)
(1.4)

is the time evolution operator. The Feynman kernel tells us the amplitude for a particle that is
initially at position qI at time tI to evolve to position qF at time tF , where of course tF > tI .
As such, the Feynman kernel contains all the information about the dynamics of the system,
which is why we care about it so much.

Remark 1.2.1 . Note that for a time-independent Hamiltonian, we have

Û(t, t0) = Û(T ) = exp

(
− i

~
ĤT

)
,

where T = t− t0. So the Feynman kernel becomes

K(qf , tF ; qI , tI) = K(qF , T ; qI , 0),

where T = tF − tI . We will use this from now on, unless otherwise specified.
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The trick to getting the Feynman integral is to insert a complete set of states

1 =

∫
dq |q〉 〈q|

for both the initial and final state. Let’s give examples for clarity.

Example 1.2.2 . The amplitude for some initial state |ψ〉 to evolve to some final state |φ〉 in
time T is

〈φ| Û(T ) |ψ〉 =

∫
dqIdqF 〈φ|qF 〉 〈qF | Û(T ) |qI〉 〈qI |ψ〉

=

∫
dqIdqF 〈φ|qF 〉K(qF , T ; qI , 0) 〈qI |ψ〉

=

∫
qIqF φ

∗(qF )K(qF , T ; qI , 0)ψ(qI),

where at the last line we’ve used the usual QM notation for the position space representation
of a state:

ψ(q) := 〈q|ψ〉 .

Example 1.2.3 . Let’s assume we have some state with initial wavefunction ψ(qI , tI). We can
find the expression for its evolution to some later wavefunction ψ(qF , tF ) in terms of the
Feynman kernel:

ψ(qF , tF ) := 〈qF |ψ(tF )〉
= 〈qF | Û(T ) |ψ(tI)〉

=

∫
dqI 〈qF | Û(T ) |qI〉 〈qI |ψ(tI)〉

=

∫
dqIK(qF , T ; qI , 0)ψ(qI , tI),

where we have used the position space representation definition given at the end of the last
example and also the definition of the time evolution operator,

|ψ(t2)〉 = Û(t2, t1) |ψ(t1)〉 ,

along with T = tF − tI .

To give some foresight, we will also use the Feynman kernel to calculate what are called
time-ordered correlations functions or Green’s functions,

G(t1, t2, ..., tN ) := 〈Ω| T
{
q̂(t1)q̂(t2)...q̂(tN )

}
|Ω〉 ,

where |Ω〉 is the ground state of our system, and T is the time ordering operator, which
essentially orders the Heisenberg4 picture operators in increasing time, e.g.

T
{
Ô1(t1)Ô2(t2)

}
=

{
Ô1(t1)Ô2(t2) if t1 > t2

Ô2(t2)Ô1(t1) if t2 > t1
.

Notation. From now on I am going to drop the hats on operators in order to save typing. It
should be reasonably clear from the context, and whenever potential confusion might arise I
shall try be explicit.

4As otherwise the operators are time independent
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1.3 Motivating The Path Integral Approach

So what is a path integral? Well as the name suggests, it is an integral over paths, but what
do we mean by this and what’s it got to do with the Feynman kernel? Well let’s consider the
double slit experiment. The interference pattern this generates can be explained in terms of
waves, or we can explain it in terms of particles, provided we put a phase on each particle
path. That is, the total amplitude to go from the source to a particular point is given by the
sum of the amplitudes of the two separate paths, as indicated in the figure below.

∗
Source

Path 1, A1

Path 2, A2

A = A1 +A2

1.3.1 Zee’s "Wise Guy"

The story then goes as follows:5 a teacher had just finished explaining the above idea to his
class when a student, going by the name of Feynman, chimed in and said "Excuse me sir,
but what happens if I put another slit in my screen?" The lecturer then replied "We just add
another contribution" while drawing the following diagram

∗
Source

A = A1 +A2 +A3

The professor then went back to what he was about to say, when Feynman chimed in
again: "What if I now poke another hole in my screen? Then another, and another after
that?" The professor at this point had had enough and simply said "Ok wise guy, I think it’s
clear to everyone that you simply sum over all the different path amplitudes. Now where was
I..." But before he could continue, yup that’s right Feynman chimed in again. "What about
if I include another screen?" Slightly irritated, but bound by his profession to be polite, the
professor drew the following diagram

5I’m paraphrasing Zee’s book here, as I love this description.
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∗
Source

A =
∑

All Paths

Now before Feynman could chime in again the professor said "And before you ask, if I add
another screen, I just do the same thing and sum over all paths again." However Feynman
had one more, very important, chime in. "Ok Sir," he said, ignoring the frustrated look on
the professor’s face, "what if I include an infinite number of screens and on each screen I poke
an infinite number of holes, so that in total there are no screens and no holes?" The professor
just laughed and continued with the rest of his course.

But as Zee points on, this last comment has a very important result. If we want to find
the amplitude for a particle to propagate from some source and arrive at a detector, we must
consider every single path connecting the two, and sum over all their amplitudes.

∗

However there is obviously an infinite number of paths connecting the two and so the result
is not a sum, but an integral. And thus the path integral is born.

Remark 1.3.1 . On a technical note, we require the paths we integrate over to be continuous.6

This is a reasonable thing to assume, as a discontinuous line would correspond to a particle
‘teleporting’ while a non-differentiable one would mean its velocity was discontinuous, which
is also a problem.

1.3.2 Relation To Feynman Kernel

Ok so we’ve answered the first question about what a path integral is, now we just need to
see how it’s related to the Feynman kernel. Well in the case of 1-dimensional QM the analogy

6On an even more technical note, it is important that the derivatives of these paths are not continuous,
i.e. if we denote the paths by γ then γ ∈ C0(M) but γ /∈ C1(M). We direct the reader interested in why this
is the case to Section 3.2 of Dr. Skinner’s QFT II notes. Many thanks to Rudolfs for pointing this out to me!

https://www.damtp.cam.ac.uk/user/dbs26/AQFT.html
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is that each screen corresponds to a fixed time and each slit a position at that time. So
the path between two slits is telling us the amplitude to go from one position at one time
to another position at a later time. Well this is just the Feynman kernel. So in the ‘limit’
that we remove all the screens, our Feynman kernel is an integral over all the different paths
through spacetime connecting the initial position at initial time to the final position at the
final time.

Remark 1.3.2 . Note to go to a higher dimensional case is easy, simply replace the slits with
a d-dimensional sheet with holes poked in it.

1.4 Hamiltonian Phase Space

Let’s calculate something now. It might not be obvious at first what we’re calculating, but it
will become clear next lecture. In order to do this, first you need to complete the following
exercise.

Exercise

Given that in the position space representation, a wavefunction for a momentum eigen-
state with momentum p is

ψp(q) := 〈q|p〉 , −i~ d
dt
ψp(q) = pψp(q),

show that
〈p|q〉 = (〈q|p〉)∗ =

1√
2π~

exp

(
− i

~
pq

)
. (1.5)

Hint: Use the differential equation above to guess the form of ψp(q) and then impose a
normalisation condition.

So what we want to find is

〈pF |U(T ) |qI〉 = 〈pF | e−
i
~HT |qI〉 .

Note this is not the Feynman kernel as we have pF for the left hand state. With the above
intuition in mind, let’s break the the time interval up into n equal intervals with

tj = tI + jε, with ε =
T

n
.

Note that this gives us t0 = tI and tn = tF , which is obviously what we want. We shall
therefore relabel pF = pn and qI = q0. Using the ε definition we can rewrite the our expression
as

〈pn| e(−
i
~Hε)

n |q0〉 = 〈pn| e−
i
~Hεe−

i
~Hε...e−

i
~Hε︸ ︷︷ ︸

n-times

|q0〉 .

Now we employ our trick of inserting the identity as a complete set of states. In fact we insert

1 = 12 =

∫
dq |q〉 〈q|

∫
dp |p〉 〈p| =

∫
dqdp√

2π~
e
i
~pq |q〉 〈p| ,
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where we have used Equation (1.5). We do this in-between every exponential term. This
gives us7

〈pn|U(T ) |q0〉 =

∫ [ n−1∏
i=1

dqidpi√
2π~

e
i
~piqi

]
〈pn| e−

i
~Hε |qn−1〉 〈pn−1| e−

i
~Hε |qn−2〉 ... 〈p1| e−

i
~Hε |q0〉 .

We now take the limit n → ∞ (an infinite number of screens), this gives ε → 0, and so we
can Taylor expand the exponentials:

e−
i
~Hε = 1− i

~
Hε+O

(
1

n2

)
.

Then using Equation (1.1), we have8

〈pi| Ĥ |qi−1〉 =
1

2m
〈pi| q̂2 |qi−1〉+ 〈pi| V̂ (q̂) |qi−1〉

=

(
q2i−1
2m

+ V (qi−1)

)
〈pi|qi−1〉

=
1√
2π~

H(pi, qi−1)e
− i

~piqi−1 ,

which gives us

〈pi| e−
i
~ Ĥε |qi−1〉 =

1√
2π~

exp

(
− i

~
(
piqi−1 + εH(pi, qi−1)

))
+O

(
1

n2

)
.

Putting this into our expression above, we get

〈pn|U(T ) |q0〉 =
1√
2π~

∫ [ n−1∏
i=1

dqidpi
2π~

]
exp

{
i

~

[ n−1∑
i=1

(
pi(qi − qi−1)

ε
−H(pi, qi−1)

)
ε

− pnqn−1 −H(pn, qn−1)ε

]}
+O

(
1

n2

)
.

We then take the limit n→∞ and define the path integral measure

∫
DpDq := lim

n→∞

∫ [ n−1∏
i=1

dqi√
2π~

dpi√
2π~

]
, (1.6)

and then argue that qn−1 = qn in this limit, and also use

lim
n→∞

qi − qi−1
ε

= q̇(ti)

i.e. the velocity of the particle,9 to finally give us
7And so begins the painful job of following terms around...
8Here I reinsert the hats for clarity
9Note this is well defined given Remark 1.3.1
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〈pn|U(T ) |q0〉 =
1√
2π~

∫
DpDq exp

[
i

~

(∫ tF

tI

dt
(
p(t)q̇(t)−H(p, q)

)
− p(tF )q(tF )

)]
.

(1.7)

1.5 Wick Rotation

As promised above, next lecture we will see why we have bothered to derive Equation (1.7),
but in order to do that we will need to use a very popular trick, the Wick rotation, and we
conclude this lecture with this.

As we will see, we are going to take the limit t→∞ next lecture, and so we need to work
out if such a thing is well defined for our time-evolution operator. That is we want to ask
what happens to10

U(t) |ψ〉 =

∫
dEe−

i
~Ht |E〉 〈E|ψ〉 =

∫
dEe−

i
~Et |E〉 〈E|ψ〉 (1.8)

in the limit t→∞. Well consider the analytic continuation of t to the complex plane:

t→ e−iθt, θ ∈ [0, π/2]. (1.9)

This is what we call a Wick rotation, and we note that θ = 0 changes nothing, but θ = π/2
takes our exponential in Equation (1.8) from being complex to being real. People often refer
to this as "going to Euclidean time", for obvious reasons. Ok so what happens no? Well our
expression becomes (setting ~ = 1 for this calculation)

U(t) |ψ〉 =

∫
dEe−i cos θEte− sin θEt |E〉 〈E|ψ〉 .

Now if we assume we have a unique ground state |Ω〉, scaled such that 〈Ω|ψ〉 6= 0 and that we
have a mass gap,11 then the second exponential in the above expression suppresses all other
energy states in our limit. That is,

lim
t→∞

U(t) |ψ〉 = e−i cos θEΩte− sin θEΩt |Ω〉 〈Ω|ψ〉 . (1.10)

Exercise

Convince yourself that similarly to Equation (1.10), we have

lim
t→∞
〈ψ|U(t) = e−i cos θEΩte− sin θEΩt 〈Ω| 〈ψ|Ω〉 .

10Note we’ve inserted 1 =
∫
dE |E〉 〈E|.

11That is the next energy level is strictly greater then EΩ



2 | Green’s Functions

2.1 N-Point Green’s Function

Last lecture we derived an expression for 〈pn|U(T ) |q0〉 and said we would use it for something.
Let’s now consider the same calculation, but now we insert a bunch of q operators at times
t1 < t2 < ... < tN in between the different U(t)s. That is consider

〈pF |U(tF − tN )q U(tN − tN−1)q...q U(t1 − tI) |qI〉 = 〈pF |U(tF )T
(
q(tN )...q(t1)

)
U(tI) |qI〉 .

This equation above says "start at some initial position and time, |qI〉, then evolve to t1,
U(t1 − tI), then insert a q operator at t1, then evolve to t2, U(t2 − t1), insert a q, etc until
you get to tN and then finally evolve to tF and arrive at the final state." For clarity, what
we’re doing is considering all the paths from initial state |qI〉 to final state |pF 〉 and fixing N
points along the way by the values q(ti). That is, every path not only has to start and end
at the same place, but they must all meet at N points in between. For example, if N = 2 we
have two fixed points, and all paths must meet there, as indicated with the two paths below.
The dashed lines are our equal time sheets, and the two dots represent the insertion of an
operator q.

tI t1 t2 tF

The calculation will follow through exactly as above, but now the q operators will act on
the inserted states |qi〉. This gives us

1√
2π~

∫
DpDq q(tN )q(tN−1)...q(t1) exp

[
i

~

(∫ tF

tI

dt
(
p(t)q̇(t)−H(p, q)

)
− p(tF )q(tF )

)]
,

where the q(ti)s here are the eigenvalues.

Remark 2.1.1 . Note the path integral automatically gives us the time-ordering. That is, even
if we switch the q(ti)s around in the final expression (which we can do because they’re just
numbers) we can arrive back at the time ordered expression. This is just because we define
our evolution operator to only go forward in time, and so the only way we can order our time
evolution operators is so that q(tN ) appears furthest to the left and q(t1) furthest to the right.

9
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We now use the result from the end of last lecture, to claim that in the limit tI → −∞
and tF →∞, the above simply becomes the so-called N -point Green’s function:

G(t1, ..., tN ) := 〈Ω| T
(
q(t1)...q(t)N)

)
|Ω〉 .

This just comes from taking the limit using the right hand side of the first equation in this
lecture. So we get an explicit expression for it as

G(t1, ..., tN ) = Ñ
∫
DpDq q(tN )q(tN−1)...q(t1) exp

[
i

~

∫ ∞e−iθ
−∞e−iθ

dt
(
p(t)q̇(t)−H(p, q)

)]
,

for some normalisation constant Ñ , which contains the p(tF )q(tF ) term in the previous expo-
nential. Note the limits on the integrals contain factors of e−iθ to remind us that we’re doing
the Wick rotated integral. To save notation, we shall drop the integral limits below, but it’s
important to note that we have to take this limit to define the N -point Green’s function.

Remark 2.1.2 . With that last comment in mind, it is common to take θ = π/2 so that
e−iθ = −i and then define τ = it so that we can write the integral as1

i

∫ −i∞
i∞

dt =

∫ ∞
−∞

dτ

As mentioned last lecture, τ is referred to as Euclidean time. Note in Euclidean time q̇ = iq̇,
and so

L(q, q̇)→ −m
2
q̇2 − V (q),

and so we define the Euclidean Action

SE [q] :=

∫
dτ

(
m

2
q̇2 + V (q)

)
This allows us to see the exponential suppression easier as we get (setting ~ = 1 for a moment).

eiS → e−SE .

2.1.1 1-Dimensional QM

Let’s evaluate this for our 1-dimensional QM system. We have

pq̇ −H = pq̇ − p2

2m
− V (q)

= − 1

2m
(p−mq̇)2 +

m

2
q̇2 − V (q)

= − 1

2m
(p−mq̇)2 + L(q, q̇),

which allows us to split the Dp and Dq integral, giving us

G(t1, ..., tN ) = Ñ

∫
Dp exp

(
− i

2m~

∫
dt (p−mq̇)2

)∫
Dq q(tN )...q(t1) exp

[
i

~

∫
dtL(q, q̇)

]
.

1Bonus exercise, check this.
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Claim 2.1.3 . The integral ∫
Dp exp

(
− i

2m~

∫
dt (p−mq̇)2

)
is well defined.

Proof. Given Remark 2.1.2, at first site this claim doesn’t seem true, as going to Euclidean
time just removes the i and puts a minus sign in, which in this case would give us a positive
exponential. However we have to remember that q̇ involves a time derivative and so is also
effected. We therefore prove the claim by considering discreting time. The integral then
becomes a product of integrals of the form∫

dp̃ exp

[
− iε

2m~
p̃2
]
,

where we have defined
p̃ := (p−mq̇),

and used the fact that p and p̃ are linearly related to change the measure to dp̃. Under the
Wick rotation, this becomes∫

dp̃ exp

[
− ε

2m~
(

sin θ + i cos θ
)
p̃2
]

=

√
2π~m

iε(cos θ − i sin θ)
,

where the right-hand side comes from Gaussian integral formula which states∫
dxe−ax

2
=

√
π

a
if Re a > 0,

which we have as θ ∈ [0, π/2]. If we then set θ = 0, we get∫
Dp exp

(
− i

2m~

∫
dt(p−mq̇)2

)
= lim

n→∞

(
−im
ε

)n−1
2

, (2.1)

where have used the definition of Dp, Equation (1.6).

So if we absorb this result into our normalisation constant, and use the definition of the
action, we get

G(t1, ..., tN ) = N
∫
Dq q(tN )...q(t1) exp

(
i

~
S[q]

)
.

We can find the normalisation constant by consider the 0-point Green’s function, which
is just the vacuum inner product 〈Ω|Ω〉 = 1, as we define it to be normalised. Therefore we
conclude

N =
1∫

Dq exp
(
i
~S[q]

) ,
finally giving us the result
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G(t1, ..., tN ) =

∫
Dq q(tN )...q(t1) exp

(
i
~S[q]

)
∫
Dq exp

(
i
~S[q]

) . (2.2)

Remark 2.1.4 . Note that G(t1, ..., tN ) is totally symmetric in all its entries, as the q(ti)s are
just numbers. Recall Remark 2.1.1 tells us we can do this without altering the time ordering
we need.

In Euclidean time this can be written

GE(t1, ..., tN ) =

∫
Dq q(tN )...q(t1) exp

(
− 1

~SE [q]
)

∫
Dq exp

(
− 1

~SE [q]
)

2.2 Partition Function

2.2.1 Functional Derivative

Recall that a functional is an object that maps functions to numbers. The action is an
example, as it maps the functions q(t) to some number. Recall the derivative of a function is
given by

df

dx
:= lim

ε→0

f(x+ ε)− f(x)

ε
.

We can use this to motivate the definition of the derivative of a functional.

Definition. [Functional Derivative] Given a functional F [J ], we define the functional
derivative of F as

δF [J ]

δJ(s)
:= lim

ε→0

F [J(t) + εδ(t− s)]− F [J ]

ε
. (2.3)

We are often only interested in the variation δF [J ], which is given by

δF [J ] =

∫
ds δJ(s)

δF [J ]

δJ(s)
. (2.4)

We can also find the variation by simply calculating

F [J + δJ ]− F [J ]

to order δJ .

Corollary 2.2.1. It follows immediately from the definition above that for the functional

F [J ] = J(t), ∀J

where t is some fixed value in the argument of J that

δJ(t)

δJ(s)
:=

δF [J ]

δJ(s)
= δ(t− s),

where the left-hand expression is defined for notational simplicity.
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Remark 2.2.2 . We can treat δ
δJ(s) sort of like a regular partial derivative, and use things like

the product rule. However we should be careful when doing this as it doesn’t always work.

Example 2.2.3 . Let

F [J ] =

∫
dtφ(t)J(t),

then

δF [J ]

δJ(s)
= lim

ε→0

∫
dtφ(t)

(
J(t) + εδ(t− s)

)
−
∫
dtφ(t)J(t)

ε

= φ(s)

We get the same result using the partial derivative approach:

δF [J ]

δJ(s)
=

∫
dt

(
δφ(t)

δJ(s)
J(t) + φ(t)

δJ(t)

δJ(s)

)
=

∫
dtφ(t)δ(t− s)

= φ(s).

This gives us

δF [J ] =

∫
dsφ(s)δJ(s).

2.2.2 Partition Function

We can take the sum over all the N -point Green’s functions and get what is known as a
generating functional. For the specific case of the sum of N -point Green’s functions, we call
the resulting generating functional the partition function.

Z[J ] := 1 +
∞∑
N=1

1

N !

∫
ds1...dsNG(s1, ..., sN )J(s1)...J(sN ). (2.5)

The partition function is incredible useful as it allows us to calculate any N -point Green’s
function by taking N functional derivatives and then setting J = 0. That is

G(t1, .., tN ) =
δNZ[J ]

δJ(t1)...δJ(tN )

∣∣∣∣
J=0

. (2.6)

Example 2.2.4 . Let’s do it for N = 2. The derivatives will kill the first two terms in the
expansion, and then anything with more than two Js will vanish when we set J = 0. So we
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are left with

δ2Z[J ]

δJ(t1)δJ(t2)

∣∣∣∣
J=0

=
1

2

∫
ds1ds2G(s1, s2)

δ

δJ(s1)

(
δ(s1 − t2)J(s2) + J(s1)δ(s2 − t2)

)
=

1

2

∫
ds1ds2G(s1, s2)

(
δ(s1 − t2)δ(s2 − t2) + δ(s2 − t2)δ(s1 − t2)

)
=

1

2

(
G(t2, t1) +G(t1, t2)

)
= G(t1, t2),

where the last line has used the symmetric property of the N -point Green’s functions.

2.2.3 Path Integral Form

We can use the path integral expression for the N -point Green’s function, Equation (2.2), to
write the partition function as a path integral. We have

1

N
Z[J ] =

∫
Dq

(
e
i
~S[q] +

∞∑
N=1

1

N !

∫
ds1...dsNJ(s1)...J(sN )q(s1)...q(sN ) e

i
~S[q]

)

=

∫
Dq

∞∑
N=0

1

N !

(∫
ds q(s)J(s)

)N
e
i
~S[q]

=

∫
Dq exp

(
i

~
S[q] +

∫
ds q(s)J(s)

)
,

so that

Z[J ] = N
∫
Dq exp

(
i

~
S[q] +

∫
dt q(t)J(t)

)
(2.7)

Remark 2.2.5 . Equation (2.7) is often defined using another convention given by sending

δ

δJ(t)
→ −i~ δ

δJ(t)
,

so that we get

Z[J ] = N
∫
Dq exp

[
i

~

(
S[q] +

∫
dt q(t)J(t)

)]
.

We can also write it as a Euclidean path integral. If we use the convention Equation (2.7),
we redefine J(t)→ iJ(t) to give

Z[J ] = N
∫
Dq exp

(
− 1

~
SE [q] +

∫
dt q(t)J(t)

)
.
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2.3 Back To The Feynman Kernel

Ok now let’s return to the Feynman kernel and express it as a path integral. Recall that it’s
defined as

K(qF , T ; qI , 0) := 〈qF |U(T ) |qI〉 .

We can insert the complete set of states

1 =

∫
dpF |pF 〉 〈pF |

to give

K(qF , T ; qI , 0) =

∫
dpF 〈qF |pF 〉 〈pF |U(T ) |qI〉

= lim
n→∞

(
−im
ε

)n−1
2
∫
dpF

1√
2π~

e
i
~pF qF

1√
2π~

∫
Dq exp

(
i

~
S[q]− pF qn−1

)
,

where we have used Equations (1.5), (1.7) and (2.1), with the latter manipulated as we did
for the Green’s function to get the action in the exponential. Note that we haven’t taken the
limit on the qn−1 in the exponential yet, this is because we can now combine it with the first
exponential and use∫

dpF exp

(
i

~
pF (qF − qn−1)

)
= (2π~)δ(qF − qn−1),

to give (putting the definition of Dq, Equation (1.6), in)

K(qF , T ; qI , 0) = lim
n→∞

(
−im
ε

)n−1
2
∫ [ n−1∏

i=1

dqi√
2π~

]
δ(qF − qn−1) exp

(
i

~
S[q]

)

= lim
n→∞

√
−im
2π~ε

∫ [ n−2∏
i=1

√
−im
2π~ε

dqi

]
exp

(
i

~
S[q]

)∣∣∣∣
qn−1=qF

,

(2.8)

where on the second line we have done some rearrangement (notice the upper limit on the
product changes because of delta function). So if we redefine Dq appropriately, we get

K(qF , T ; qI , 0) =

∫
Dq exp

(
i

~
S[q]

)
(2.9)



3 | Classical Limit & Schwinger-Dyson
Equation

3.1 Classical Limit

Last lecture we showed that in our path integral every path contributes a factor of e
i
~S[q], all

with magnitude 1. This was a result in the quantum theory, and as always it is instructive
to check that in some limit we get the classical theory back, i.e. only paths that satisfy the
Euler-Lagrange equations. We shall do just that now.

When we observe a path, there is always some uncertainty about the path, that is we
cannot distinguish between q(t) and q(t) + η(t), where η(t) is some small deviation. Now the
action for this latter path is given by

S[q + η] =

∫ tF

tI

dtL(q + η, q̇ + η̇)

=

∫ tF

tI

dt

(
L(q, q̇) + η(t)

∂L

∂q
(q, q̇) + η̇(t)

∂L

∂q̇
(q, q̇) +O(η2)

)
= S[q] +

∫ tF

tI

dt η(t)

(
∂L

∂q
− d

dt

[
∂L

∂q̇

])
+O(η2),

where we’ve used the standard tool of integrating by parts and saying that η(tI) = 0 = η(tF ),
and where on the last line we have suppressed the arguments of L for notational reasons. So
we see the deviated path contributes a phase factor of∫ tF

tI

dt η(t)

(
∂L

∂q
− d

dt

[
∂L

∂q̇

])
+O(η2).

So what does this mean for the classical limit? Well we need to sum over all the different
η(t) variations, and if q(t) is not the classical path qcl(t), i.e. they don’t satisfy the Euler-
Lagrange equations, we get a wide range of contributions to the phase. Overall these will
approximately destructively interfere and so will not contribute too drastically to the result.
Now if q(t) = qcl(t) then the bracket term vanishes and the contributions to the phase are
O(η2), and so the deviation range is decreased. We claim that this results in a significant
reduction in the destructive interference and contributes to constructive interference, and so
this gives the biggest contribution. In other words, paths that aren’t the classical path cancel
whereas the ones near the classical path add, so we get the classical result.

16
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Remark 3.1.1 . We can also see this result by doing our Wick rotation to the Euclidean picture.
Here we get contributions of the form

exp

(
− 1

~
(
SE [q]− SE [qcl]

))
,

and so we see straight away that non-classical paths are exponentially suppressed.

3.1.1 Variations Around The Classical Path

What happens to our path integral when we take a variation around the classical path? We’ve
just seen how the action changes, and showed that if we take the variation around the classical
path we get

S[q + η] = S[qcl] +O(η2).

What about the integral measure Dq? Well to this the change q = qcl + η is just a change of
variables, and we take qcl to be a ‘constant’ so we just get

Dq → Dη.

So the path integral is ∫
Dqe

i
~S[q] = e

i
~S[qcl]

∫
Dη e

i
~O(η

2).

Now we note that if we consider an action that is at most quadratic in q, then our order η2

terms are independent of qcl (we would need at least a cubic q for that), and so for these cases
we get ∫

Dqe
i
~S[q] = e

i
~S[qcl]

∫
Dη e

i
~S[η].

We then simplify notation by using tI = 0, tF = T which gives

η(0) = 0 = η(T ) =⇒ η(t) =
∞∑
i=1

aλ sin

(
λπt

T

)
, (3.1)

then if we discretise the time over n intermediate paths qj , this is equivalent (up to a normal-
isation factor) to taking η(t) as above and integrating over the aλ. We shall return to this
soon when consdiering the harmonic oscillator.

3.2 Calculating The PI Exactly

As anyone familiar with QFT knows, it is only in very special cases that we can obtain exact
results and in all other cases we tend to turn to perturbation theory. We will address this
next lecture, but for this lecture we will present particular examples of when we can obtain
an exact result for the path integral. It is worth emphasising again that this is not something
you can do in general, but is a particular property of the systems we’re studying.
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3.2.1 Free Particle

Of course the most simple system we can study is the free particle. This corresponds to
setting V (q) = 0, and so our Feynman kernel (in the discrete time formalism, i.e. using
Equation (2.8)) becomes

K(qF , T ; qI , 0) = lim
n→∞

√
−im
2π~ε

∫ [ n−2∏
i=1

√
−im
2π~ε

dqi

]
exp

(
im

2~ε

n−1∑
j=1

(qj − qj−1)2
)
, (3.2)

where we also impose q0 = qI and qn−1 = qF . We now notice that these are essentially a
(huge) collection of Gaussian integrals, and so we can solve it. However, we need to be a bit
clever because each qj appears twice, i.e. once as qj and once as q(j+1)−1. We therefore want
some kind of inductive proof of a result.

Claim 3.2.1 . We can rewrite Equation (3.2) as

K(qF , T ; qI , 0) = lim
n→∞

√
−im
2π~ε

[
n−2∏
j=1

√
j

j + 1

]
exp

(
im

2~ε
1

n− 1
(qF − qI)2

)
Proof. First we note that the we can do the dqj integral without effecting any of the k > j
results but it will effect the ` < j ones. So we start at j = 1 and work upwards. The proof
then follows by noticing that we can write the j = 1 term as (note j0 = jI).

I1 =

√
−im
2π~ε

∫
dqj exp

[
im

2~ε

(
(qj+1 − qj)2 +

1

j
(qj − qI)2

)]
.

Let’s see what this evaluates to. We start by expanding

(qj+1 − qj)2 +
1

j
(qj − qI)2 =

(
j + 1

j

)
q2j − 2

(
qj+1 +

1

j
qI

)
qj + q2j+1 +

1

j
q2I .

Now we use a Wick rotation T → −iT , and hence ε = T/n→ −iε, so our integral becomes

IE1 =

√
m

2π~ε

∫
dqj exp

(
− aq2j + bqj + c

)
where

a =
m

2~ε

(
j + 1

j

)
, b =

m

~ε

(
qj+1 +

1

j
qI

)
, and c = − m

2~ε

(
q2j+1 +

1

j
q2I

)
.

Now use the Gaussian result∫
dx exp

(
− ax2 + bx+ c

)
=

√
π

a
exp

(
b2

4a
+ c

)
, if Re a > 0,

to give

IE1 =

√
j

j + 1
exp

[
m

2~ε

(
j

j + 1

[
qj+1 +

1

j
qI

]2
−
[
q2j+1 +

1

j
q2I

])]
.
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Let’s now focus on the bit inside round brackets:

j

j + 1

(
qj+1 +

1

j
qI

)2

−
(
q2j+1 +

1

j
q2I

)
= q2j+1

(
j

j + 1
− 1

)
+
q2I
j

(
1

j + 1
− 1

)
− 2qj+1qI

(j + 1)

= − 1

j + 1

(
q2j+1 + q2I − 2qj+1qI

)
= − 1

j + 1
(qj+1 − qI)2,

so if we undo our Wick rotation, i.e. ε→ iε, we get

I1 =

√
j

j + 1
exp

(
im

2~ε
1

j + 1
(qj+1 − qI)2

)
.

So now we consider the dq2 integral: the square root factor obviously just factors out and
the rest is simply

exp

[
im

2~ε

((
qj2+1 − qj2

)2
+

1

j1 + 1

(
qj1+1 − qI

)2)]
,

then we use j2 = j1 + 1 to give

I2 =

√
j1
j2

√
−im
2π~ε

∫
dq2 exp

[
im

2~ε

((
qj2+1 − qj2

)2
+

1

j2

(
qj2 − qI

)2)]
,

which is (up to the first root factor) the equation we started the proof with. So we see the
formula holds inductively (that’s the reason we’ve been using j all the time rather then setting
j = 1).

So we will just get a
√
j/j + 1 factor for each integral, there’s n− 2 of these giving us the

full result

K(qF , T ; qI , 0) = lim
n→∞

√
−im
2π~ε

[
n−2∏
j=1

√
j

j + 1

]
exp

(
im

2~ε
1

n− 1
(qj−1 − qI)2

)
,

then we finally use qj−1 = qF which gives us exactly the result in the claim.

Now we note that the product in the above formula will simply give

n−2∏
j=1

√
j

j + 1
=

1√
n− 1

,

and so, using T = nε ≈ (n − 1)ε, where the second term is understood in the limit n → ∞,
we finally get

K(qF , T ; qI , 0) =

√
−im
2π~T

exp

(
im

2~T
(qF − qI)2

)
∝ exp

(
i

~
S[qcl]

)
, (3.3)

where the second part comes from the fact that the square-root term is independent of qF /qI
and the definition of the classical action.
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3.2.2 Simple Harmonic Oscillator

Another case we can solve exactly is the simple harmonic oscillator. The Lagrangian is

L =
m

2
q̇2 − m

2
ω2q2.

This has classical action

S[qcl] =
mω

2 sin(ωT )

[
(q2F + q2I ) cos(ωT )− 2qF qI

]
. (3.4)

We can treat this as a variation to the classical path, and so as per the section above our
path integral is ∫

Dqe
i
~S[q] = e

i
~S[qcl]

∫
Dη exp

(
im

2~
(
η̇2 − ω2η2

))
= e

i
~S[qcl]

∫
Dη exp

[
im

2~
η

(
− d2

dt2
− ω2

)
η

]
,

where the second line follows from integration by parts.

Exercise

Prove that integration by parts leads to the expression above.

We then use our simplified notation Equation (3.1) and note that this is an eigenvector of
the operator in our integral, i.e.(

− d2

dt2
− ω2

)
η =

(
λ2π2

T 2
− ω2

)
η,

to obtain (absorbing everything else into the proportionality constant, we will get it all back
at the end) ∫

Dqe
i
~S[q] ∝ lim

n→∞

[ n∏
j=1

∫
daλ

]
exp

[
im

2~

(
λ2π2

T 2
− ω2

) n∑
i=1

a2λ

]
.

Then we notice this is just the product of a bunch of Gaussian integrals, so we get∫
Dq e

i
~S[q] ∝

∞∏
λ=1

(
λ2π2

T 2
− ω2

)−1/2
∝
∞∏
λ=1

(
1− ω2T 2

λ2π2

)−1/2
=

(
sin(ωT )

ωT

)−1/2
.

Now the proportionality constant appears to have got very complicated as we’ve gone
along, however it can easily be checked that we haven’t removed anything that is a function
of ω, and so we know that our path integral is of the form∫

Dη e
i
~S[η] = f(T )

(
sin(ωT )

ωT

)−1/2
.

So how do we find f(T ), well we use

lim
ω→0

(
sin(ωT )

ωT

)
= 1,
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to notice that in this limit our classic action, Equation (3.4), is just that of a free particle
action, which gives us

lim
ω→0

∫
Dq e

i
~S[q] = f(T ) exp

(
im

2~T
(qF − qI)2

)
,

which comparing to Equation (3.3) gives us

f(T ) =

√
−im
2π~T

,

and finally∫
Dq e

i
~S[q] =

√
−imω

2π~T sin(ωT )
exp

(
mω

2 sin(ωT )

[
(q2F + q2I ) cos(ωT )− 2qF qI

])
.

3.3 Schwinger-Dyson Equation

As we said before, it is not normally true that we can solve path integrals exactly, and we
need some method to solve them perturbatively. We can gain an appreciation of this fact by
finding the differential equations that the partition function satisfies. Recall that the partition
function can be written

Z[J ] = N
∫
Dq exp

(
i

~
S[q] +

∫
dtq(t)J(t)

)
.

In this expression, q(t) is just an integration variable, and so the result is completely unchanged
if we change variables to

q(t)→ q(t) + η(t),

provided η(t) is independent of q. That is, we also have (using D(q + η) = Dq for fixed η)

Z[J ] = N
∫
Dq exp

(
i

~
S[q + η] +

∫
dtq(t)J(t) +

∫
dtη(t)J(t)

)
= N

∫
Dq exp

(
i

~
S[q] +

i

~

∫
dtη(t)

δS[q]

δq(t)
+

∫
dtq(t)J(t) +

∫
dt η(t)

δ

δq(t)

∫
dsJ(s)q(s)

)
+O(η2),

where the second line simply comes from the expanding S[q + η] and rewriting∫
dt η(t)J(t) =

∫
dt η(t)

δ

δq(t)

∫
dsJ(s)q(s).

Now the difference between the two different expressions for Z[J ] must vanish (as they are
equal, all we’ve done is change integration variable). So if we take them away from each other
and Taylor expand we get

0 =
i

~

∫
dt η(t)

δS[q]

δq(t)
+

∫
dt η(t)

δ

δq(t)

∫
ds J(s)q(s) +O(η2)

=

∫
dtη(t)

δ

δq(t)

(
i

~
S[q] +

∫
dsJ(s)q(s)

)
+O(η2)

= N
∫
Dq

∫
dtη(t)

δ

δq(t)
exp

(
i

~
S[q] +

∫
dsJ(s)q(s)

)
+O(η2),
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where the last line follows from the fact that the exponential is non-degenerate and that the
path integral of 0 is 0. Now we use that we haven’t specified the form of η(t), and so we can
conclude

0 = N
∫
Dq

δ

δq(t)
exp

(
i

~
S[q] +

∫
dsJ(s)q(s)

)
.

Now we shall assume our Lagrangians are of the form

L(q, q̇) =
m

2
q̇2 + V (q),

where V (q) is some polynomial function. Then using the fact that the functional variation of
the action gives us the Euler-Lagrange equations, the above condition become

0 = N
∫
Dq

(
i

~

[
− V ′

(
q(t)

)
−mq̈(t)

]
+ J(t)

)
exp

(
i

~
S[q] +

∫
dsJ(s)q(s)

)
.

Finally we notice that

δ

δJ(t)
exp

(
i

~
S[q] +

∫
dsJ(s)q(s)

)
= q(t),

and so we can replace the qs in the previous equation with functional derivatives w.r.t. J(t).
This allows us to pull these terms outside the path integral (i.e. past the Dq), giving us a
differential equation for the partition function, known as the Schwinger-Dyson equation:(

− i

~

[
V ′
(

δ

δJ(t)

)
+m

d2

dt2
δ

δJ(t)

]
+ J(t)

)
Z[J ] = 0. (3.5)

This now explains to us why the previous two problems were solvable: if we have a
quadratic action, then V ′ is linear and so we get 2nd order linear functional differential equa-
tion, which we can solve. However for the more general cases, when V ′ is not linear, things
get a lot more complicated.



4 | SD For SHO & Perturbation The-
ory

4.1 Schwinger-Dyson For SHO

We ended last lecture the the derivation of the Schwinger-Dyson equation. We start this
lecture by showing how it works for the example of a SHO system. Here the potential is

V (q) =
m

2
ω2q2, =⇒ V ′(q) = mω2q,

and so we get a nice linear equation for the Schwinger-Dyson formula:[
− im

~

(
ω2 +

d2

dt2

)
δ

δJ(t)
+ J(t)

]
Z[J ] = 0.

Using the ansatz Z[J ] = eW [J ],1 we get

im

~

(
d2

dt2
+ ω2

)
δW [J ]

δJ(t)
= J(t),

so if we take a second functional derivative w.r.t. J(s), we get

im

~

(
d2

dt2
+ ω2

)
δ2W [J ]

δJ(s)δJ(t)
= δ(s− t). (4.1)

Now we use the definition of the partition function as the sum of N -point Green’s functions
along with the result

G(t) = 〈Ω| q(t) |Ω〉 = 0

for the SHO we get

W [J ] = lnZ

= ln

(
1 +

1

2

∫
dtdsJ(t)J(s)G(t, s) + W̃ [J ]

)
=

1

2

∫
dtdsJ(t)J(s)G(t, s) + W̃ [J ],

1Here we have used the fact that Z[0] = 〈0|0〉 = 1 for a normalisable theory, otherwise we have to use
Z[J ] = AeW [J].

23
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where

W̃ [J ] =

∞∑
n=3

1

n!

∫
dt1...dtnJ(t1)...J(tn)G(t1, ..., tn) (4.2)

and we have used

ln(1 + x) = x− x2

2
+
x3

3
+ ...

So we conclude that the 2-point Green’s function is indeed a Green’s function with the operator

im

~

(
d2

dt2
+ ω2

)
G(t, s) = δ(s− t). (4.3)

We use our intuition from solving differential equations to suggests the ansatz

G(t, s) = Ce−iω|s−t|,

where we take the modulus as we know that G(t, s) = G(s, t). We can actually go one step
further and use the other known fact that

G(0, 0) = 〈Ω| q2 |Ω〉 =
~

2mω
(4.4)

for the SHO to guess

G(t, s) =
~

2mω
e±iω|s−t|.

Ok let’s check this does indeed satisfy Equation (4.3). We start by rewriting our ansatz
as

G(t, s) =

{
A+ cos(|s− t|ω) +B+ sin(|s− t|ω) s > t

A− cos(|s− t|ω) +B− sin(|s− t|ω) t > s.

It follows immediately from the symmetry G(t, s) = G(s, t) that we require

A+ = A− and B+ = B−,

so we can just write
G(t, s) = A cos(|s− t|ω) +B sin(|s− t|ω)

We get the value of A straight from Equation (4.4),

A = G(0, 0) =
~

2mω
.

Now we want the action of the derivative operator in Equation (4.3) to give a delta function,
which is discontinuous. Therefore, using

cos |x| = cosx,

which is smooth,2 we know that it is the sin term that gives us it. Now away from s = t we
have a smooth result, so we only need look at the region |s − t| ≈ 0, and therefore we can
Taylor expand:

im

~

(
d2

dt2
+ ω2

)
G(t, s) =

im

~

(
d2

dt2
+ ω2

)
B|s− t|ω +O(ω3)

2That is infinitely differentiable, with continuous result.
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Now we claim that we don’t need to consider the ω2 part of the operator as this will cancel
with the O(ω3) term in the expansion.3 Then using the fact

d

dx
|x| = x

|x|
=

{
1 x > 0

−1 x < 0
=⇒ d2

dx2
|x| = 2δ(x),

we get
im

~

(
d2

dt2
+ ω2

)
G(t, s) =

im

~
Bω2δ(s− t),

so comparing to Equation (4.3) we conclude

B = − i~
2mω

So altogether we have

G(t, s) =
~

2mω

(
cos(|t− s|ω)− i sin(|t− s|ω)

)
=

~
2mω

e−i|s−t|ω. (4.5)

Now what about W̃ [J ]? Well we need it to satisfy

im

~

(
d2

dt2
+ ω2

)
δ2W̃ [J ]

δJ(s)δJ(t)
= 0,

otherwise we would get another term on the right-hand side of Equation (4.1). Using the
definition Equation (4.2) and the above calculation it’s clear we’ll get something of the form

G(t1, ..., tn) =
(
A1 cos(ωt1) +B1 sin(ωt1)

)
...
(
An cos(ωtn) +Bn sin(ωtn)

)
,

but we also require that G(t1, ..., tn) is totally symmetric, so we also require

A1 = ... = An = B1 = ... = Bn.

We then also need the result to be time-translation invariant, but this is not possible here
and so we have to conclude that the coefficients all vanish. This just leaves us with

W [J ] =
1

2

∫
dtdsJ(t1)J(t2)G(t1, t2),

and so we conclude that the partition function is4

Z0[J ] = exp

(
1

2

∫
dt1dt2J(t1)G0(t1, t2)J(t2)

)
, (4.6)

with G0(t1, t2) given by Equation (4.5).

3That is we would get a term d2

dt2

(
− ω3

3!
|s− t|3

)
, which cancels the ω2|s− t|ω term.

4The subscripts 0 will make sense in a minute.
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4.2 Perturbation Theory

In order to make the perturbation calculations easier to follow, we introduce some new nota-
tion, as listed below.

• J1 = Jt1 := J(t),

• (G0)t1,t2 := G0(t1, t2),

• J ·G0 · J :=
∫
dt1dt2J1(G0)t1,t2J2,

• (J ·G0)2 :=
∫
dt1J1(G0)t1,t2 , and similarly for (G0 · J)1.

Now let’s suppose we want to study some system that can be expressed as a perturbation
around some known solution, that is the Lagrangian is of the form

L(q, q̇) = L0(q, q̇)− V (q),

where L0(q, q̇) is our known system and V (q) is a ‘small’ perturbation (i.e. the coupling
constant that appears in it is small). The partition function for the known system is given by

Z0[J ] = N0

∫
Dq exp

(
i

~
S0[q] +

∫
dtJ(t)q(t)

)
where N0 is some normalisation constant. The full theory then has partition function

Z[J ] = Ñ
∫
Dq exp

(
i

~
S0[q] +

∫
dtJ(t)q(t)− i

~

∫
dtV

(
q(t)

))
.

We then employ our clever trick used in the derivation of the Schwinger-Dyson equation and
trade the argument q(t) of V for a functional variation w.r.t. J(t) and pull it outside the path
integral, giving us

Z[J ] = exp

[
− i

~

∫
dtV

(
δ

δJ(t)

)]
Ñ
∫
Dq exp

(
i

~
S0[q] +

∫
dtJ(t)q(t)

)
= N exp

[
− i

~

∫
dtV

(
δ

δJ(t)

)]
Z0[J ],

where N = Ñ/N0. Now note that Z0[J ] is independent of the coupling constants (i.e. the
parameters in V (q)) and so we get a perturbation series by expanding the exponential on the
last line above to the required power of coupling.5

Ok this is all rather abstract, so let’s look at an example.

Example 4.2.1 . Let

L =
m

2
q̇2 − m

2
ω2q2︸ ︷︷ ︸

L0=LSHO

− λ

3!
q3︸︷︷︸

V (q)

,

5If this idea of ‘power of coupling’ doesn’t mean anything to you, hopefully it will make sense in a moment.
If not, reading an introduction to QFT from the second-quantisation approach and Feynman diagrams should
clear up any confusion.
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where we have identified the simple harmonic oscillator as our known system. For clarity
with the footnote above, λ here is our coupling constant and we take it to be small. Roughly
speaking, it corresponds to the coupling strength for 3 particles interact (as it comes with q3).
In the Taylor expansion the λn term will come with q3n, and so corresponds to the interaction
of 3n particles, and this is what we mean by expanding to the relevant power of the coupling
constant — just truncate your expansion to the order of particle interactions you want to
consider.

We have already found the partition function for the SHO, Equation (4.6), and so (using
the notation introduced at the start of this section) the partition function for the full theory
is

Z[J ] = N exp

[
− i

~
λ

3!

∫
dt

(
δ3

δJ3(t)

)]
exp

(
1

2
J ·G0 · J

)
.

Let’s just consider coupling to first order, we therefore get

Z[J ] = N
[
1− i

~
λ

3!

∫
dt

(
δ3

δJ3(t)

)
+O(λ2)

]
exp

(
1

2
J ·G0 · J

)
.

We need to find the functional derivatives, and we find this by considering them to be analo-
gous to ‘regular derivatives’ and use the chain rule:6

δ3

δJ3(t)
exp

(
1

2
J ·G0 · J

)
=

δ2

δJ2(t)

[
(J ·G0)t exp

(
1

2
J ·G0 · J

)]
=

δ

δJ(t)

[(
(G0)t,t + (J ·G0)

2
t

)
exp

(
1

2
J ·G0 · J

)]
=
[
(G0)t,t(J ·G0)t + 2(G0)t,t(J ·G0)t + (J ·G0)

3
t

]
exp

(
1

2
J ·G0 · J

)
=
[
3(G0)t,t(J ·G0)t + (J ·G0)

3
t

]
exp

(
1

2
J ·G0 · J

)
.

So plugging this into our expression for the partition function, we get

Z[J ] = N

[
1− i

~
λ

∫
dt

(
1

2
(G0)t,t(J ·G0)t +

1

3!
(J ·G0)

3
t

)]
exp

(
1

2
J ·G0 · J

)
. (4.7)

Finally we can obtain the normalisation coefficient by looking at the 0-point function (i.e.
Z[0]) and requiring it be one, This gives

1 = N
(
1 + 0

)
e0 =⇒ N = 1 +O(λ2).

4.2.1 Feynman Diagrams

To those familiar with the Hamiltonian approach to QFT, the title of this subsection is prob-
ably a huge relief. We can indeed get some Feynman rules from the path integral approach,
however one should note that these rules are specific to this case, and so some symbols will

6Note by the symmetry of G0 we have (J · G0)t2 = (G0 · J)t1 , so we can remove the factors of 1/2 under
derivative.
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appear that you do not see in the second-quantisation Feynman diagrams. We use the above
example as a proxy to state the Feynman rules and leave it to the reader to imagine how they
adapt to other cases (it is exactly as you would think).

Part Of Diagram Maths Expression Comment

G0(t1, t2)

t1/t2 are the end
points, usually we do
not explicitly label

them.a

∫
dsJ(s)

The integrand includes
the other factors from

the diagram.

− iλ
~

∫
dt

This is the interaction
vertex specifically for
our example.b This
clearly changes

depending on the
theory.

aThey are always integrated over so just match to the integration variables.
bNote we don’t put the 3! here, this comes from the symmetry factors, see blow.

As with the second-quantisation approach, we just draw all the possible Feynman diagrams
we can at the relevant order of coupling and then obtain the maths expression using the rules
above (and also accounting for the symmetry factors). Let’s do the example for the previous
example.

Example 4.2.2 . We represent the above calculation in Feynman diagrams as

1
NZ[J ] =

[
1+ + +O(λ2)

]
exp

( )
We can then work out the symmetry factors by looking at the diagrams:
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Diagram Symmetry Factor Why

1

2

We can reflect the loop
about the horizontal

axis.

1

3!

Permutations of the
three lines.

1

2

Can reflect in a vertical
line down the middle.

Exercise

Convince yourself that the diagram given above does indeed give us Equation (4.7).

4.2.2 Green’s Functions From Feynman Diagrams

Recall that we can obtain the N -point Green’s function by taking functional derivatives w.r.t.
J(t) of the partition function, Equation (2.6):

G(t1, .., tN ) =
δNZ[J ]

δJ(t1)...δJ(tN )

∣∣∣∣
J=0

.

We now want to see how to do this in terms of our diagrams. Well the hollow circles represent
integrated factors of J(s) in the diagram, so our functional varitation will remove this circle
and replace it with the derivative Js argument, i.e. we use, for example,

δ2

δJ1J2

(
1

2
(J ·G0 · J)s,r

)
= (G0)t1,t2

to replace

δ2

δJ1δJ2

( )
=

t1 t2

Note that it is only the terms that have exactly N hollow circles in it that survive this
process: if there’s less then there’s a derivative that has nothing to act on; if there’s more
then setting J = 0 corresponds to saying diagrams with a hollow circle left vanish.

Remark 4.2.3 . Note that our differentiated diagrams need to respect the symmetry property
of the maths. For example, we know that (G0)t1,t2 = (G0)t2,t1 and so we must have
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t1 t2
=

t2 t1

Note we don’t get factors from this symmetry though, because the diagrams come with that
same factor divided. For example

δ
δJ1

( )
=

t1

without a factor of 3! at the front. That is, there are 3! different ways to get the right-hand
side, but the symmetry factor of this diagram is exactly 1/3!.

Example 4.2.4 . We can find the 2-point function for our q3 theory. To first order in λ, all the
diagrams outside the exponential vanish (as none have exactly 2 hollow circles), and so we
are just left with the terms that are pulled down from the action on the exponential. It is
clear7 that what we are left with at the end is simply

t1 t2

We now note that from the diagrams we can obtain terms that do not appear in the
expansion of Equation (4.7). For example, the following diagram is a valid diagram at first
order in λ

where we note this is not the sum of two diagrams, but is collectively one diagram. We see
that this is essentially two of the previous diagrams ‘put next to each other’ in a disconnected
way. This diagram will give a non-zero contribution to the 3-point Green’s function, and it is
easy to convince yourself (exercise below) that the full 3-point function is given by

t1 t2 t3
+

t2 t1 t3
+

t3 t2 t1
+

t1

t2t3

Exercise

Convince yourself that the above is indeed the 3-point function for the q3 theory.

7And hence I’m saving myself the pain of Tikzing it all.
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4.2.3 Vacuum Bubbles

Now note that if we go to order λ2 then we will get diagrams that look like

and

These diagrams have no external legs (i.e. there are no hollow circles), and we refer to
diagrams of this kind as vacuum bubbles. Our partition function does not contain vacuum
bubbles and so we need to ‘divide the diagrams out’. What do we mean by this? Well we
note that for every one of these vacuum bubble diagrams we also get the same diagram but
now with a (J ·G0 · J) term too, e.g.

We therefore ‘factor out’ the vacuum bubble parts and divide by the purely vacuum bubble
diagrams to cancel them. For example, the 2-point function for the q3 theory at order λ3 is
given by the division of diagrams

t1 t2

[
1+ +

]
+

t1 t2

+
t1 t2

+

t1 t2[
1+ +

]

which after the division just leaves

t1 t2
+

t1 t2

+
t1 t2

+

t1 t2

You might protest and say "but the vacuum bubble diagrams didn’t appear with the
diagrams not in the square brackets above, so why do they cancel there?" The answer is the
the denominator corresponds to

1

1 +O(λ2)
= 1−O(λ2)

where the second line follows from λ being small. The diagrams in the numerator already
contain λ powers and so to order λ2 they only pick up the 1.
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Remark 4.2.5 . Note you can use the same argument for the terms that do cancel: here you
get the vacuum bubble terms coming with a plus sign (bit in square bracket) and also with a
minus sign (from binomial expansion above), and so they cancel.

This gives us the final general conclusion

N -point function is given by sum of all diagrams with exactly N external legs but no
vacuum bubble contributions.

Exercise

Convince yourself that there are no other contributions to the 2-point function at order
λ2.

4.3 Semi-Classical Expansion

We conclude the course with a brief discussion of the semi-classical approximation to the path
integral. We obtain this by Taylor expanding the action about a classical path qcl:

S[qcl + η] = S[qcl] +

∫
dt1η(t1)

δS

δq(t1)
[qcl] +

1

2!

∫
dt1dt2η(t1)η(t2)

δ2S

δq(t1)δq(t2)
[qcl] + ...,

now we note that the term with a single integral vanishes as the variation of the action
gives the Euler-Lagrange equations and the classical path minimises these. Now let’s consider
rescalling

η →
√
~η,

and noting, as before,
D(qcl + η) = Dη,

then our Feynman kernel becomes

K(qF , T ; qI , 0) =

∫
Dq exp

(
i

~
S[qcl + η]

)
∝ e

i
~S[qcl]

∫
Dη exp

[
i

2!

∫
dt1dt2η(t1)η(t2)

δ2S[qcl]

δq(t1)δq(t2)
+ ...

+
i

n!
~
n
2
−1
∫
dt1...dtnη(t1)...η(tn)

δnS[qcl]

δq(t1)...δq(tn)
+ ...

]

= e
i
~S[qcl]

∫
Dη exp

[
i

2!

∫
dt1dt2η(t1)η(t2)

δ2S[qcl]

δq(t1)δq(t2)

](
1 +O

(√
~
))
.

Now obviously the prefactor is the classical contribution, and we see that the leading order
quantum contribution is a Gaussian path integral in η, i.e. its of the form∫

Dη exp
(
iη · Ω · η

)
∝
(

det(−iΩ)
)−1/2

,
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where8

Ωt1,t2 =
1

2

δ2S[qcl]

δq(t1)δq(t2)

= −1

2

(
m
d2

dt21
+ V ′′

(
qcl
))
δ(t1 − t2)

where we have assumed the Lagrangian has the usual kinetic term (i.e. m
2 q̇

2). det(−iΩ) is
the product of the eigenvalues of the operator

i

2

(
m
d2

dt21
+ V ′′

(
qcl
))

acting on η(t) subject to the constraints η(tI) = η(tF ) = 0. The semiclassical approximation
is when we ignore the contributions from the O(

√
~) terms.

Remark 4.3.1 . If the action is quadratic in q (e.g. the SHO) then the semiclassical solution
is exact.

Remark 4.3.2 . If the classical path is not unique we must take a sum over all the different
classical solutions.

Example 4.3.3 . Let’s look at the SHO as an example. As just remarked, this will give us an
exact result. Here we have

V ′′(qcl) = mω2, =⇒ Ωt1,t2 = −m
2

(
d2

dt21
+ ω2

)
δ(t1 − t2).

The eigenvectors of the operator here are

η(t) = A cos(ω̃t) +B sin(ω̃t),

with eigenvalues
λ = ω2 − ω̃2.

If we now impose the condition η(tI) = 0 = η(tF ) with tI = 0, tF = T , we conclude

ω̃ =
nπ

T
, n ∈ N,

and so

λ = ω2 −
(
nπ

T

)2

∝ 1−
(
ωT

nπ

)2

.

We can therefore conclude

(
det(−iΩ)

)−1/2 ∝ ∞∏
n=1

[
1−

(
ωT

nπ

)2]−1/2
=

√
ωT

sin(ωT )
.

8Extra exercise: prove this formula holds.



Useful Texts & Further Readings
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• Zee, Anthony. Quantum Field Theory In A Nutshell. Vol. 7. Princeton University
Press, 2010.
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